
Special Year on Large Language Models and Transformers, Part 1

Monday, Aug. 26 - Friday, Dec. 13, 2024

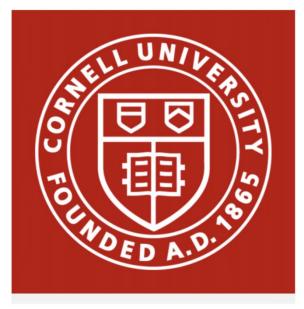
Chris Bail

- Automated annotation
- Synthetic data
- Al as agent / researcher

Seth Spielman

- New form of measurement
- Fusion of data sources
- Shift to model-based information
- Precision treatments

- New prediction with context
- Forgo the standardize response


- Bias
- Replicability / Junk Science
- Environmental Impact
- Measurement a moving target
- Al not a data base (next token prediction)

- No understanding black box
- Modification for social science (fine-tuned)
- Data availability

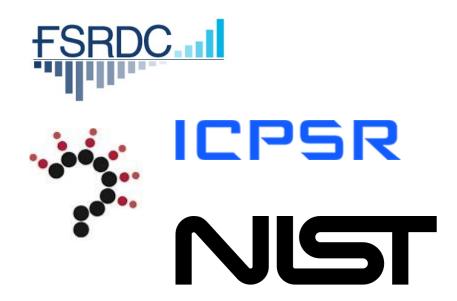
Susan Athey

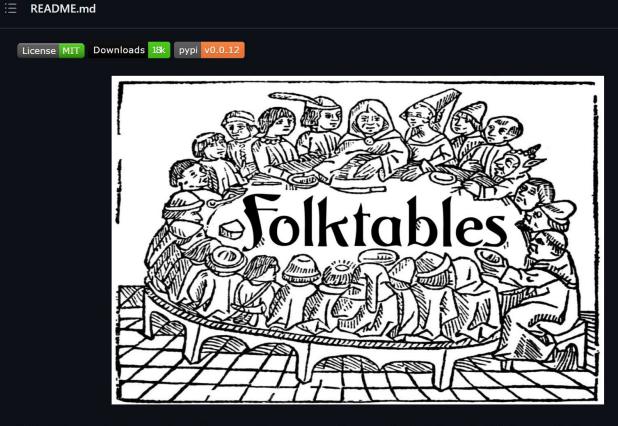
Thought Summit on The Future of Survey Science:

Government, industry, and academ behaviors, technology, and public tr Thought Summit brings together ex data science, and Al. Our goal is to cost-effective surveys.

Start Date: September 22, 2024 End Date: September 25, 2024

All Day Event? Yes


Location: Cornell University


Event URL:

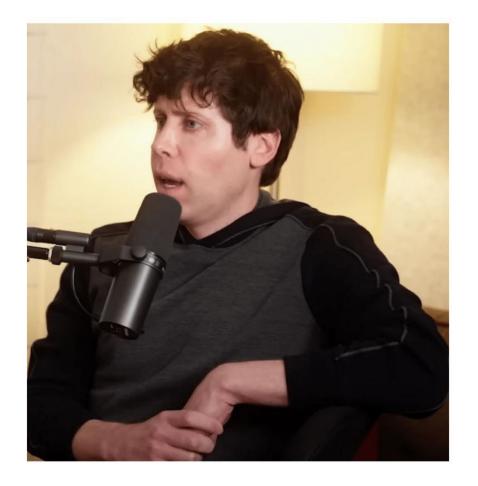
- Benchmarks needed for traditional and new methods.
- Team science to get the models right.
- LLMs for social science (fine-tuned, instruction tuning on base model).

Benchmarks

Folktables is a Python package that provides access to datasets derived from the US Census, facilitating the benchmarking of machine learning algorithms. The package includes a suite of pre-defined prediction tasks in domains including income, employment, health, transportation, and housing, and also includes tools for creating new prediction tasks of interest in the US Census data ecosystem. The package additionally enables systematic studies of the effect of distribution shift, as each prediction task can be instantiated on datasets spanning multiple years and all states within the US.

Why the name? Folktables is a neologism describing tabular data about individuals. It emphasizes that data has the power to create and shape narratives about populations and challenges us to think carefully about the data we collect and use.

BRINGING SURVEY METHODOLOGY TO MACHINE LEARNING Stephanie Eckman Christoph Kern, Jacob Beck, Bolei Ma, Rob Chew, Frauke Kreuter



"The bias I am most nervous about is the bias of the human feedback raters"

Sam Altman
March 25 2023 "The Lex Fridman Podcast"

Text Input

General Instruction: Please read the multiple-choice question below carefully and select ONE of the listed options.

Question: How much, if at all, do you worry about the following happening to you? Being the victim of a terrorist attack

Options:

- A. Worry a little
- B. Do not worry at all
- C. Worry a lot
- D. Refused

Answer:

Text Output

Sure! Here's my response: A. Worry a little

First-Token Probability

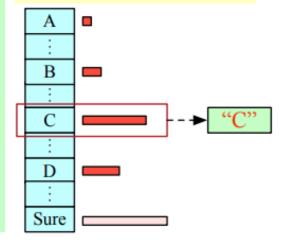


Figure 1: Example of LLM's *mismatch* between first-token probability prediction ("C") and text output ("A").

"My Answer is C": First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models

Xinpeng Wang^{1,2} Bolei Ma^{1,2} Chengzhi Hu¹ Leon Weber-Genzel¹ Paul Röttger³

Frauke Kreuter^{1,2} Dirk Hovy³ Barbara Plank^{1,2}

¹LMU Munich, Munich, Germany

²Munich Center for Machine Learning (MCML), Munich, Germany

³Bocconi University, Milan, Italy

https://arxiv.org/pdf/2402.14499 or Findings of the Association for Computational Linguistics ACL 2024

- Who should be funded? Unclear what scientific approach can and should be used to evaluate research proposals using LLMs / of LLMs.
- What should be reported? Standards for transparency of models and research (reliability / generalizability).

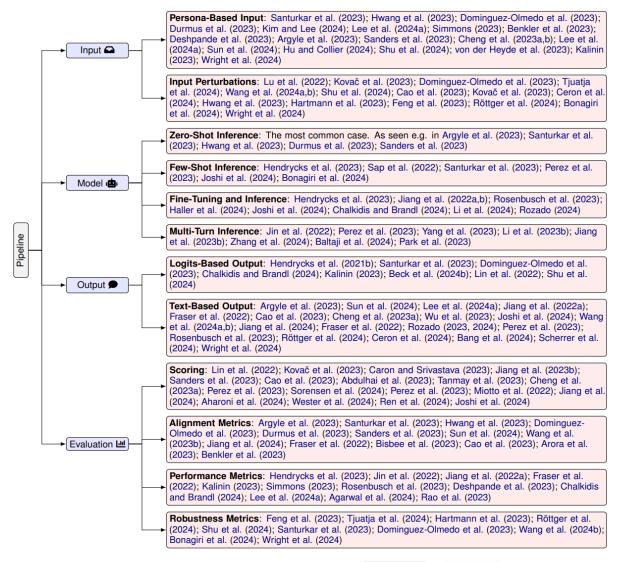
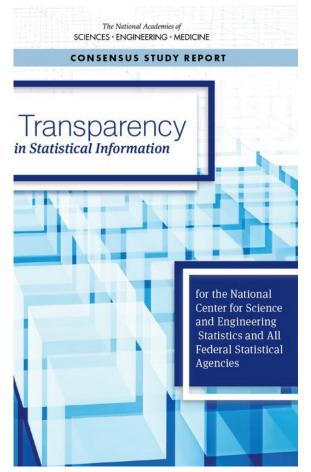


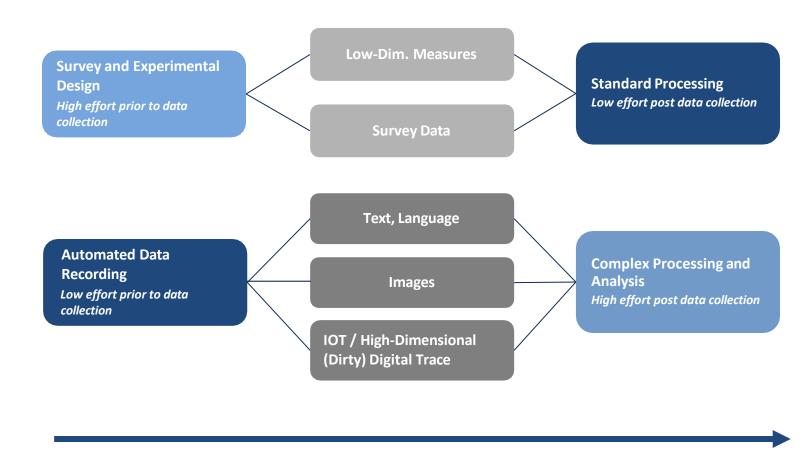
Figure 1: A taxonomy of evaluation pipeline across input \triangle \rightarrow model \rightleftharpoons \rightarrow output \bigcirc \rightarrow evaluation \rightleftharpoons

The Potential and Challenges of Evaluating Attitudes, Opinions, and Values in Large Language Models

Bolei Ma* IMU, Maintenant Manash Mana-Carolina Haensch Mu, Mana-Caroli

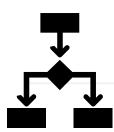
https://arxiv.org/pdf/2406.11096 or EMNLP 2024


Position: Insights from Survey Methodology can Improve Training Data


Stephanie Eckman¹ Barbara Plank²³⁴ Frauke Kreuter⁵⁴¹⁶

https://arxiv.org/pdf/2403.01208 or ICML 2024

Transparency



Another way to think of AI in analysis

- Generative AI as assistant rather than replacement.
- Coding help
- Translation of legacy code
- Ideation
- What is a good data analysis?

Assistants: Job Classification

occupationMeasurement: A Comprehensive Toolbox for Interactive Occupation Coding in Surveys

Jan Simson 1, Olga Kononykhina, and Malte Schierholz 1

1 Department of Statistics, Ludwig-Maximilians-Universität München, Germany ¶ Corresponding author

DOI: 10.21105/joss.05505

Software

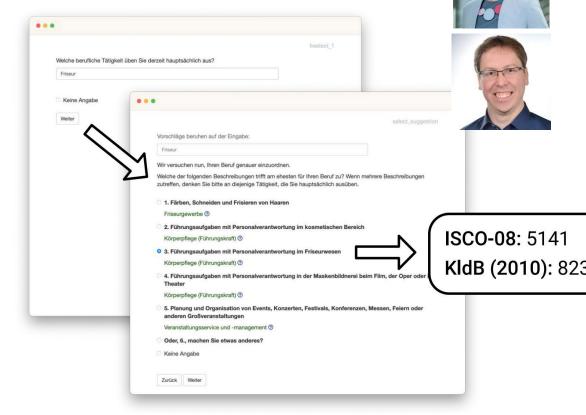
- Review 🗗
- Repository 🗗
- Archive 🗗

Editor: Chris Vernon 대 @

Reviewers:

- @welch16
- @danielruss

Submitted: 30 March 2023 Published: 24 August 2023


License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

People earn a living a multitude of ways which is why the occupations they pursue are almost as diverse as people themselves. This makes quantitative analyses of free-text occupational responses from surveys hard to impossible, especially since people may refer to the same occupations with different terms. To address this problem, a variety of different classifications have been developed, such as the International Standard Classification of Occupations 2008 (ISCO) (ILO, 2012) and the German Klassifikation der Berufe 2010 (KIdB) (Bundesagentur für Arbeit, 2011), narrowing down the amount of occupation categories into more manageable numbers in the mid hundreds to low thousands and introducing a hierarchical ordering of categories. This leads to a different problem, however: Coding occupations into these standardized categories is usually expensive, time-intensive and plagued by issues of reliability.

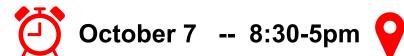
Here we present a new instrument that implements a faster, more convenient and interactive occupation coding workflow where respondents are included in the coding process. Based on the respondent's answer, a novel machine learning algorithm generates a list of suggested occupational categories from the Auxiliary Classification of Occupations (Schierholz, 2018), from which one is chosen by the respondent (see Figure 1). Issues of ambiguity within occupational categories are addressed through clarifying follow-up questions. We provide a comprehensive toolbox including anonymized German training data and pre-trained models without raising privacy issues, something not possible yet with other algorithms due to the difficulties of anonymizing free-text data.

Comments to Machine Learning and AI in Econometrics. Susan Athey.

Chris Bail

- Automated annotation
- Synthetic data
- Al as agent / researcher

Seth Spielman


- New form of data data?
- Fusion of data sources
- Shift to model-based information

Susan Athey

- Precision treatments
 - isolate control
- New prediction with context
- Forgo the standardize response

- Benchmarks
- Specialized LLMs
- Transparency/Methodology
- Team science/Synergies
- Assistant as assistant

University of Maryland / Al Interdisciplinary Institute of Maryland

PUBLICATIONS & RESOURCES

5 Short courses

6 Small group discussions

2 Keynotes

2 Panel discussions

Participants

Abt, Adobe, Census Bureau, D3, Deloitte, DOJ, Forbes, Goodwill, Google, IBM, ICF, National Academies, NORC, ORB, Pew, RTI, Rutgers, Sinai, SRRS, Survey 160, World Bank, UMD, RAND, Uni Mannheim, Uni Michigan, Uni Munich, Valoray, WBA

.. you (?)

