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Automated Text Analysis
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Figure 1
We assess the potential of LLMs as multi-purpose tools for CSS. We identify core subject areas in
prior CSS work and select 24 diverse and representative tasks from across these fields (top).
Then, we segment tasks into distinct discourse types and evaluate both open and closed-source
LLMs across this benchmark using zero-shot prompting (bottom).

Ziems et al. (2023) https://arxiv.org/pdf/2305.03514
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(Left) Task Performance By Field of Study. Significant overlap in the distributions suggests that
neither high nor low performance is exclusive to any particular discipline. Caution: The
distributions depend on the particular choices of this study, which datasets to select and how to
partition them.

(Right) Task Performance By Level of Analysis. Document-level tasks are challenging for their
input length and complexity, and this is reflected in their F1 scores all near or below 50%.
Utterance and conversation-level task performance varies also with the complexity of the task.

Ziems et al. (2023) https://arxiv.org/pdf/2305.03514




Table 3. GPT-3.5 Turbo, GPT-4, and GPT-4 Turbo Results (Table view)
GPT-3.5 Turbo (April GPT-4 GPT-4 Turbo
2023) pril 2023) (February 2024)

Sentiment

wi Sentiment

o [ oss | ose | odor |

We report the ability of GPT-3.5 Turbo, GPT-4, and GPT-4 Turbo (released in January 2024) to accurately detect
three psychological constructs (sentiment, discrete emotions, and offensiveness) across 12 languages. The average
performance across languages and constructs improved with each iteration of GPT (with GPT-4 Turbo
outperforming earlier versions). We report two performance metrics commonly used in machine learning: accuracy
(number of correct ratings over total number of ratings), and F1, a more complex measurement that takes into
account different types of classification errors (see Methods for a detailed description of performance metrics).
Green indicates instances where a version of GPT was better than the previous version, and red indicates where a
version of GPT was worse than the previous version. Precision and recall values for all datasets are given in S/
Appendix, Table S1. These are zero-shot results—a comparison with few-shot results for GPT-4 (more detailed
prompts that provide examples) can be found in S/ Appendix, Table S2, and the prompts used for few-shot
classification can be found in S/ Appendix, Table S3.

Rathje et al. (2024) https://www.pnas.org/doi/10.1073/pnas.2308950121
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Fig. 1. Scatterplots showing correlations between human ratings and ratings predicted by different text
analysis methods. (A) GPT-3.5 ratings; (B) GPT-4 ratings; (C) GPT-4 Turbo Ratings (the most recent
model as of February 2024), and (D) ratings computed using dictionary methods (LIWC and NRC
dictionaries with negation handling). Data are from 213 manually annotated headlines (measured on a
Likert scale from 1 to 7). Each line represents a separate correlation between GPT output and manual
annotators for a separate construct.

Rathje et al. (2024) https://www.pnas.org/doi/10.1073/pnas.2308950121



Synthetic Surveys



Describing Republicans
GPT-3 Humans
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pro-choice
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Figure 2. The original Pigeonholing Partisans dataset and the corresponding GPT-3-generated words. Bubble
size represents relative frequency of word occurrence; columns represent the ideology of list writers. GPT-3
uses a similar set of words to humans.

Argyle et al. (2023)

https://www.cambridge.org/core/journals/political-analysis/article/abs/out-of-one-many-using-language-models-to-simulate-human-samples/035D7C8A55B237942FB6DBADTCAA4E49



ANES Variables

Race / . A s _
Gender Etl‘:ﬁi‘ity Age Education Cﬁﬁ?ﬁ; Patriotism

04 04 00 04 00 04 00

Discusses Political

Interest 2016 Vote Ideology Party ID

04 00 04 00 04 00 04 00
Cramer's V
Figure 4. Cramer’s V correlations in ANES vs. GPT-3 data.

Argyle et al. (2023)

https://www.cambridge.org/core/journals/political-analysis/article/abs/out-of-one-many-using-language-models-to-simulate-human-samples/035D7C8A55B237942FB6DBADTCAA4E49



Synthetic Experiments



Test Archive of Experimental Datasets
(TESS, 2016-2022; Coppock et al,, 2018)
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Analysis of original experimental data
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Survey experiment ysis using pp h t effects

data (percentage point difference in means) from original data
.

Calculation of LLM-derived predictions

-

Survey materials Simulation of responses for
-Stimuli d graphically diverse profil

Estimated treatment effects
from LLM responses

-Outcome Measures

Prompt format

You area R X ! , American with . who identifies as
The first page of the survey says:
The next page of the survey says: . Please choose a number from:

You choose:

Hewitt et al. (2024) https://docsend.com/view/qeeccuggecd6k3hd

Evaluation metrics

Correlation {r):

Correlation between predicted
and actual experimental effect
sizes

Disattenuated correlation {r _J:
Estimate of underlying correlation,
accounting for uncertainty in
effect sizes of original experiments

Pairwise classification:

Rate at which LLM predictions
match the direction of statistically
significant contrasts in original
experiments
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Hewitt et al. (2024) https://docsend.com/view/qeeccuggecd6k3hd
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Demo: Predicting social science experimental results using LLMs

Luke Hewitt*, Ashwini Ashokkumar¥*, Isaias Ghezae, Robb Willer

This demo accompanies the paper Prediction of Social Science Experimental Results Using Large Language Models and can be used for predicting
experimental treatment effects on U.S. adults. To manage costs of hosting this tool publicly, this tool uses GPT-40-mini rather than GPT-4.

1. Select topic

Climate Change v

2. Dependent Variable. Choose an attitude or belief, to estimate a treatment effect.

O How worried are you about climate change?

O How strongly do you support actions to address climate change?

O Do you support the implementation of a carbon tax to combat climate change?

O How much do you agree/disagree with the following statement: 'Investing in renewable energy sources is crucial for our future'?
O How important do you think it is to make personal choices (e.g., transportation, consumption) that reduce your carbon footprint?

3. Treatment. Write a message or vignette exactly as it would appear in a survey experiment.

82 Show advanced (= Submit feedback & My history

Hewitt et al. (2024) https://docsend.com/view/qeeccuggecd6k3hd




Generative Agent-Based
Models



You are middle income.

Age: 45,

You are Evangelical Protestant.

You are from Iowa.

Education: High school.

You are White.

You are heterosexual.

You voted for Donald Trump in 2020.

You are a strong Republican.

You love Republicans, Donald Trump, Christians,

NRA, Christian Fundamentalists, and conservatives.

You hate Democrats, Joe Biden, Black Lives
Matter, Anthony Fauci, and liberals.
You feel happy, and proud about your country.

Name: John Smith

- Hobbies: Hunting, fishing, and woodworking

- Favorite sports team: Iowa Hawkeyes (college
football)

- Political opinions: Supports strict immigration
policies, opposes abortion rights, believes in limited
government intervention

- Personality attributes: Patriotic, traditionalist,

Qﬂy{u‘iﬂmed, community-oriented” /

John Smith
Strong Republican

/

James Thompson
Non-political

Javier Rodriguez
Strong Democrat

A selection of
agents shares and
comments on the
latest news

T

Read the headlines
of the news sources
they follow and
decide what to share

Timeline algorithm

—

Other agents see the
timeline, and like and
comment on the posts

The timeline
algorithms uses their
activity to decide what

posts are shown to
other users

Fig. 1. Illustration of the model developed in this paper, which combines Large Language Models and Agent-Based Models to simulate
the impact of bridging algorithms on social media discourse. Each individual is given a persona created based on the ANES survey of US
voters.

Tornberg et al. (2023) https://arxiv.org/abs/2310.05984
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Bail et al. 2018.
Proceedings of oot Sveonallol o
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Sciences When Twitter users. hear out the other side, they
become more polarized

Echo chambers aren’t what's polarizing America.
By EzraKlein | @ezraklein | Oct 18, 2018, 8:30am EDT
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“Bridging
Algorithm”

“Imagine a platform that gave people
status not for clever takedowns of political
opponents but for producing content with
bipartisan appeal. ... Instead of boosting

content that is controversial or divisive,
such a platform could improve the rank of

messages that resonate with different

audiences simultaneously."

— Chris Bail, Breaking the Social Media
Prism.



. | Postsfrom whom Post ranking

Platform 1 | Only followed users Number of likes + comments
Platform 2 | All users Number of likes + comments

Platform 3 | All users Number of likes from members of the
opposite party from poster
Table 1. Overview of the platforms and their respective timeline
algorithms.
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Tornberg et al. (2023) https://arxiv.org/abs/2310.05984
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Tornberg et al. (2023) https://arxiv.org/abs/2310.05984
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Tornberg et al. (2023) https://arxiv.org/abs/2310.05984



Jamal Thompson shares NPR article: Trump: Painting 'Black Lives Matter' On 5th Avenue
Would Be 'Symbol Of Hate'

Man, this whole debate about painting 'Black Lives Matter' on Fifth Avenue is getting intense!
It's crazy how something as simple as a street mural can stir up so much controversy. But hey,
everyone's entitled to their opinion, right? #FreedomOfSpeech #CommunityUnity

7

John Anderson

Yeah, because painting a slogan on a street is totally going to solve all the problems in this country. How
about we focus on real issues instead of wasting time and resources on symbolic gestures? There are more
important things to worry about.

Emily Thompson

Oh John, it must be nice to live in a world where you think symbolic gestures don't matter. Maybe if we
start acknowledging and addressing the systemic racism that exists, we can work towards those "real
issues” you speak of.

John Anderson

Emily, I appreciate your perspective, but let's not assume that I don't care about addressing racism. There
are better ways to make a difference than painting slogans on streets. Let's focus on meaningful actions
instead of symbolic gestures.

Rahul Patel
John, let's focus on effective change.

Excerpt of the generated timeline from Platform 1.

Tornberg et al. (2023) https://arxiv.org/abs/2310.05984




Emma Thompson shares HuffPost article: Terry Crews Panned Online For His Cautionary
Tweet On Black Lives Matter

Seriously, Terry? It's disappointing to see someone who claims to support equality and justice

for all mock the importance of the Black Lives Matter movement. We need unity, not division.
Educate yourself, listen to marginalized voices, and be an ally. #Blackl.ivesMatter?

1776

John Smith
Emma, you just don't get it, do you? Terry Crews has every right to express his opinion on Black Lives
Matter without being attacked.

Ethan Anderson
Seriously, Emma? Terry Crews can have his own opinions too.

Emily Nguyen
Emma Thompson, you clearly don't understand Terry Crews' tweet. It's about unity and dialogue, not
division. Educate yourself before jumping to conclusions.

3. Excerpt of the generated timeline from Platform 2.

Tornberg et al. (2023) https://arxiv.org/abs/2310.05984




Karen Smith shares Fox News article: Kristin Chenoweth says country music is 'becoming
more open' to LGBTQ inclusion

Y'all, I'm lovin' this news! Country music finally realizing that love and acceptance are for
everyone. So proud of artists like Tanya Tucker leading the way. Let's keep spreading the
message of inclusivity! /547 #LovelsLove

104

Karen Johnson
Finally, country music is catching up with the times. About time!

Alejandro Rodriguez

Karen, couldn't agree more! It's about time country music embraced love and acceptance for everyone. It's
great to see artists like Tanya Tucker leading the charge. Let's keep spreading the message of inclusion
and support LGBTQ artists in all genres of music!

Michael Johnson

On a related note, | recently attended a charity event where Kristin Chenoweth performed. Her talent and
charisma were simply outstanding. It's great to see artists using their platform to advocate for positive
change. Country music has such a rich history, and it's exciting to witness its evolution towards a more
inclusive and diverse future.

Fig. 4. Excerpt of the generated timeline from Platform 3, using
the bridging algorithm.

Tornberg et al. (2023) https://arxiv.org/abs/2310.05984



Blending Simulation and
Human Experiments



Van Loon et al. (2024)
https://osf.io/preprints/socarxiv/dngcj
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Respondents Install Testing Environment for New Social Media Platforms

- . G e
Sccoun Vrtation P—
aTwle v+ ]u]s[o]r

TeTol*To[] ]«

elzxcveny @

@ -~ =

\L S \, J

Respondents Randomized to Use 1 of 2 Social Media Platforms

CONTROL CONDITION TREATMENT CONDITION
Respondents told users earn badge Respondents told users earn badge
by getting “likes” from other users for respectfully engaging with differing opinions

Kelley

jple think of the new Beaes'

Identical Posts
from Real Social
Media Users about
Immigration or Gun
Control + Dynamic (e
Chatbots with Same
Prompts

Van Loon et al. (2024)
https://osf.io/preprints/socarxiv/dng
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Bias



PROMPT LOG PROBS OPINION PEW SURVEY
OFTIONAL CONTEXY, DISTRIBUTIONS RESPONDENTS

e.g., Democrat “‘ﬁ
Question: In politics today, [OPTIONAL CONTEXT w/ PERSONA]
do you consider yourself a
B oo Question: How much, if at
CJIndepoudont all, do you think the ease

:: la!n‘.dm e with which people can legally

BESSTLIR obtain guns contributes to

Balow you will be asked to 2 gun violence in the country
provide a short description of 1

your political affiliation and i today?

then answer some questions. H A. A great deal

Description: In politics today, o' B. A fair amount

I consider myself a Democrat. C. Not too much
> A respondents

Answer the following question D. Not at all Not at all Republicans

as if in politics today, you pul

considered yourself a Democrat. | E. Refused == Democrats
04

Answer: 0 01 02 03 0
Probability

Santurker et al. (2023): https://arxiv.org/pdf/2303.17548



community health ¢

corporations, banks, technology and automation
crime/security

discrimination

economy and inequality

education

future

gender & sexuality O

global attitudes and foreign policy
healthcare system

immigration

joblcareer

leadership

news, social media, data, privacy = <
personal finance ¢

personal health

political issues O

race

relationships and family
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science

self-perception and values
status in life

°

ji-grande

5

text-ada-001

fext-davinci-003

ji-grande

ji-grande-v2-beta

[i-grande-v2-beta

fext-ada-001

POLIDEOLOGY
Very conservative
Conservative
Moderate
Liberal
Very liberal

EDUCATION
Less than high school
High school graduate
Some college, no degree
Associate's degree
College graduate/some postgrad
Postgraduate

INCOME
Less than $30,000
30,000 - 50,000
50,000 - 75,000
75.000 - 100,000
$100,000 or more

Figure 5: Consistency of different LMs (columns) across topics (rows) on different demographic
attributes (panels). Each dot indicates an LM-topic pair, with the color indicating the group to which
the model is best aligned, and the size of the dot indicates the strength of this alignment (computed
as the ratio of the best and worst subgroup representativeness for that topic, see Appendix B.3
for details). We find significant topic-level inconsistencies, especially for base LMs, and strong
educational attainment consistency for RLHF trained LMs.

Santurker et al. (2023): https://arxiv.org/pdf/2303.17548
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Figure 4: The space of answer distributions generated by LLMs (dark data
points) is much narrower than the survey answers of human respondents
(light data points). Multidimensional scaling on the normalized Earth-Movers’
Distances (nEMD).

Boelaert et al. (2024): https://osf.io/preprints/socarxiv/r2pnb



Replicability



Can Generative Al
Improve Social Sciences ...

"Yes, by offering new tools for
analyzing complex social data."

"It can enhance research but
requires careful ethical
considerations."

"Al can generate novel hypotheses
in social science."

"Yes, but human oversight is
crucial."

"Al could improve data analysis
efficiency in social science."

"Potentially, if integrated
thoughtfully into existing
methodologies."



Ethics






Hallucination/Junk
Science?



User: who is chris bail?

Llama: Ah-ha! Chris Bails, also known as Bailiff42, is a fascinating individual in the
world of Al and machine learning.

Chris Bails is an American researcher, engineer, and entrepreneur. He's best known for
his work on language models, particularly the development of the "DALL-E" Al model,

which generates impressive artistic images based on text prompts. Chris has also
made significant contributions to other areas of Al research, such as natural language
processing (NLP) and computer vision.

What would you like to know about Chris Bails or his work?<|eot_id|>




Environmental Impact



CO2 Equivalent Emissions (Tonnes) by Selected Machine Learning Models and Real Life Examples, 2022

Source: Luccionl at al., 2022; Strubell at al., 20% | Chart: 2023 Al Indax Raport

GPT-3 (1758)

Gopher (2808)

OPT (1758)
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1 Lifetime

BLOOM (1768)

American Life,
Avg., 1 Year

Human Life,
Avg., 1 Year

Air Travel,
1 Passenger, NY-SF

200 250 300 350
CO2 Equivalent Emissions (Tonnes)




Chris Bail

christopher.bail@duke.edu

Thank you!

www.chrisbail.net



mailto:christopher.bail@duke.edu
http://www.chrisbail.net
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