Vaccine Safety Communication in a Pandemic

Daniel Salmon, PhD, MPH

Director, Institute for Vaccine Safety
Professor, International Health and Health, Behavior and Society
Johns Hopkins Bloomberg School of Public Health

With Crisis (can) Come Opportunity

- COVID-19 has caused global morbidity, mortality, and social & economic disruptions
- Seemingly very effective and very safe vaccines
- Demonstrate the value of science and vaccines

COVID Vaccine Challenges

- New vaccine technology
- If we build it, they may not come
 - Variable perceptions of disease burden
 - Politics impacting science and response
 - Distrust of pharma-industrial complex
 - Perception vaccines rushed
- Real or coincidental adverse events derailing the program

Vaccine Safety Science: Rigor

- Approval process ensures benefits > risks for populations & outcomes studied
- Observational studies after approval to examine uncommon events, excluded populations, subpopulations, and delayed onset adverse events
- Infrastructure (large healthcare databases)
 very helpful for rigor and timeliness

Clinical Trial Limitations: Sample Sizes Needed to Detect Rare Adverse Events and Impact

		Number Potentially
Rates (%)	Sample Size *	Affected**
0.1 vs. 0.2	50,000	328,000
0.1 vs. 0.3	17,500	656,000
0.05 vs. 0.1	100,000	164,000
0.01 vs. 0.02	500,000	32,800
0.01 vs. 0.03	175,000	65,600

^{*}Two-arm trial, power 80%, alpha (2 sided) = 5%

^{** 100%} vaccine coverage for the US Source: Adapted from Ellenberg 2001

Post Hoc, Ergo Propter Hoc

"After this, therefore because of this" is a logical fallacy ... since that event followed this one, that event must have been caused by this one

Estimates of Coincident, Temporally-Associated Events

	Number of coincident events since a vaccine dose:			
Coincident events	Within 1 day	Within 7 days	Within 6 weeks	Baseline incidence rate used for estimate
Guillain-Barré Syndrome (per 10 million vaccinated people)	0.51	3.58	21.50	1.87 per 100,000 person-years (all ages; UK Health Protection Agency data)
Optic Neuritis (per 10 million female vaccinees)	2.05	14.40	86.30	7.5 per 100,000 person-years in US females
Spontaneous abortions (per 10 million vaccinated pregnant women)	3,970	27,800	166,840	Based on data from the USA (12% of pregnancies)
Sudden death within 1 hour of onset of any symptoms (per 10 million vaccinated people)	0.14	0.98	5.75	Based upon UK background rate of 0.5 per 100,000 person-years

Black *et* al. Importance of background rates of disease in assessment of vaccine safety during mass immunisation with pandemic H1N1 influenza vaccines; Table 6. *Lancet* 2009; 374; Oct. 30 [Epub.]

Monitoring COVID Vaccine Safety What is Needed?

- Identify adverse events following immunization and evaluate if caused by vaccine
 - GBS in 1976
- Address spurious associations
 - Bad things happen every day & will happen after vaccination
- Ability to distinguish between the two with rigor, speed and credibility

Examples of What Works #1 The Cutter Incident

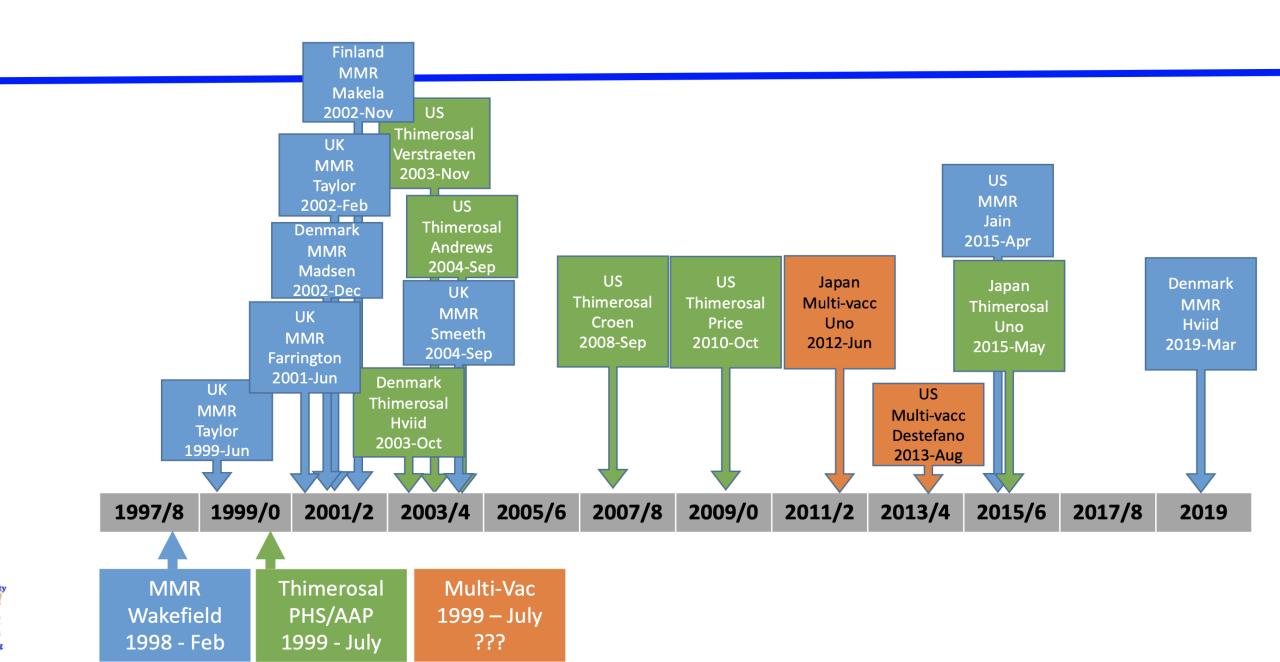
- Launch of the polio vaccine program was accompanied with reports of paralysis following vaccination
- Langmuir had recently formed the Epidemic Intelligence Service (EIS) at CDC to rapidly investigate outbreaks
- Investigation identified some vaccine (primarily manufactured by Cutter Laboratories) was not fully inactivated and had caused wild disease
- Vaccine program was halted for a very short time
- Because of this rapid investigation, robust and rigorous science, objectivity of risk assessment and transparency the program quickly resumed

Example of What Works #2 2009-10 H1N1 Safety Monitoring and Communication

- Mass vaccination program
 - In midst of vaccine crisis in confidence
 - 1976 Swine Flu Fiasco
- Most comprehensive vaccine safety and communication program ever, anywhere
- Vaccine safety crisis around H1N1 never occurred in US

What Hasn't Worked?

- Autism
- Simultaneous Vaccines
- Vaccine Ingredients


16 methodologically sound, controlled epidemiological studies exploring an association between Autism Spectrum Disorder (ASD) and receipt of MMR vaccine, thimerosal in vaccines, and simultaneous vaccination with multiple vaccines by 2019

First author	Journal	Pub Year - month	Country	Exposure
Taylor B	Lancet	1999-06	UK	MMR
Farrington CP	Vaccine	2001-06	UK	MMR
Taylor B	ВМЈ	2002-02	UK	MMR
Madsen KM	NEJM	2002-12	Denmark	MMR
Makela A	Pediatrics	2002-11	Finland	MMR
Hviid A	JAMA	2003-10	Denmark	Thimerosal
Verstraeten T	Pediatrics	2003-11	US	Thimerosal
Smeeth L	Lancet	2004-09	UK	MMR
Andrews N	Pediatrics	2004-09	US	Thimerosal
Croen LA	Am J Obstet Gynecol	2008-09	US	Thimerosal
Price CS	Pediatrics	2010-10	US	Thimerosal
Uno Y	Vaccine	2012-06	Japan	MMR/Multi-vaccines
DeStefano F	J Pediatr	2013-08	US	Multi-vaccines
Jain A	JAMA	2015-04	US	MMR
Uno Y	Vaccine	2015-05	Japan	MMR/Thimerosal
Hviid A	Ann Intern Med	2019-03	Denmark	MMR

Vaccine Autism Controversies and Studies Over Time

Vaccine Safety Science & Communication

- Good science takes time whereas anecdote, sensationalism and bad science travels quickly
- Very difficult to changes someone's mind (cognitive dissonance and affirmation bias)
- Need to inform views as being formed

Vaccine Safety Communication in a Pandemic

Daniel Salmon, PhD, MPH

Director, Institute for Vaccine Safety
Professor, International Health and Health, Behavior and Society
Johns Hopkins Bloomberg School of Public Health

