NASEM Grapevine Viruses Committee Meeting March 4, 2024 Davis, CA

Grapevine Red Blotch Virus and Vectors

Frank Zalom

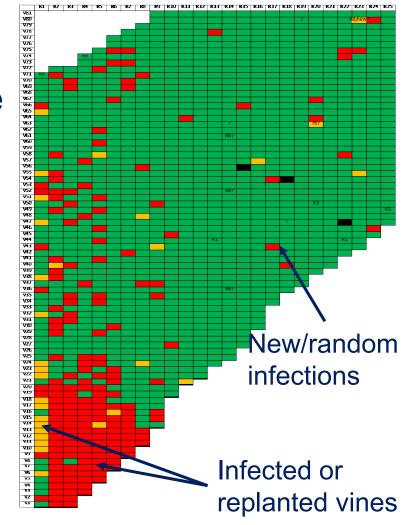
Department of Entomology and Nematology UC Davis

Mysore Sudarshana

USDA-ARS and Department of Plant Pathology UC Davis

2013 → *Is red blotch disease spreading?*

Many virologists believed that GRBV was not spreading, but ...


- Observed spatial patterns of diseased vines suggested spread was occurring
- Year-to-year increase in new GRBV infections was documented in several vineyards
- All known geminiviruses are insect transmitted

 Pattern of infection in vineyards indicated a motile pest might be responsible

Search for potential GRBV vectors began in 2014 - methods

- Identify vineyard sites where spread was occurring
- Collect phloem-feeding Hemiptera from symptomatic areas of the vineyards
- PCR-test the collected insects for presence of GRBV to determine proportion carrying the virus
- Identify those insect species with a high proportion of insects collected with GRBV present in body (or salivary glands)
- Identify the insect species of possible vector candidates

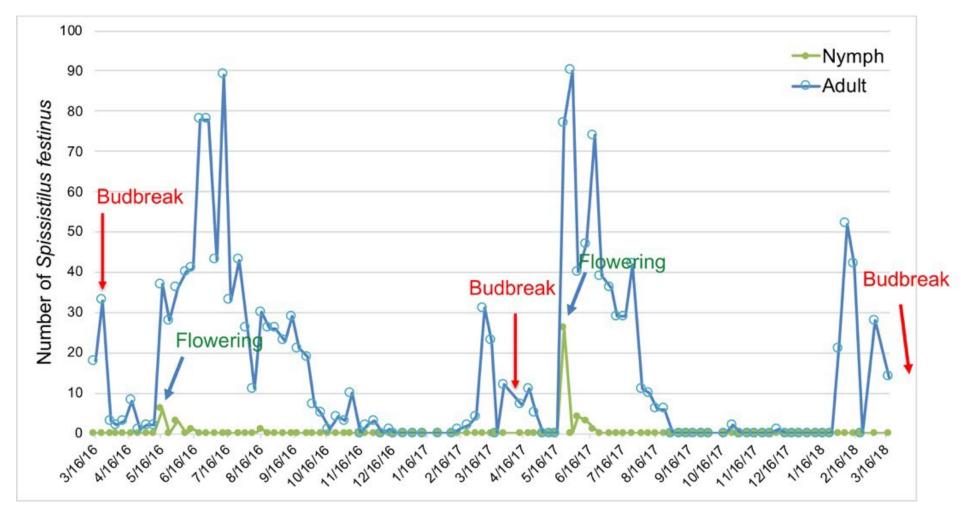
Transmission studies (>225 in 2014 and 2015 alone)

- Established insect colonies when possible
- Allowed insects to feed on GRBV-infected grapevines (control insects were fed on uninfected vines)
- Transferred insects to GRBV negative grapevines
- Tested plants periodically for GRBV presence

From these initial assays, only one insect was shown to transmit GRBV using standard protocols ...

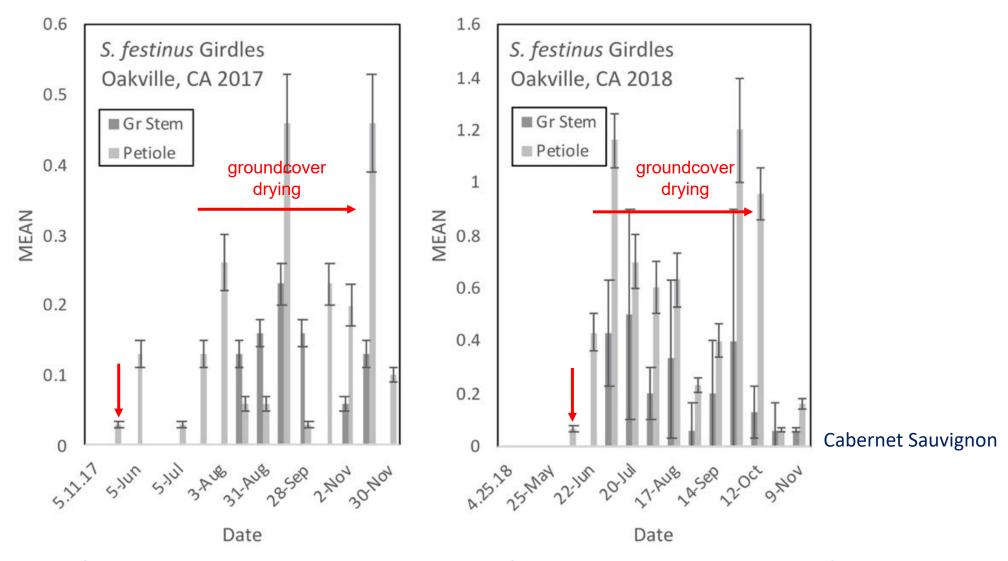
Three-cornered alfalfa hopper

Spissistilus festinus (Say)



Bahder B.W., Zalom F.G., Jayanth M., and Sudarshana M.R. 2016. Phylogeny of geminivirus coat protein sequences and digital PCR aid in Identifying *Spissistilus festinus* as a vector of Grapevine red blotch-associated virus. Phytopathology. 106:1223-1230.

Vector Management Research


- Spissistilus seasonal phenology
- Spissistilus biology in and around vineyards
- Feeding and reproductive hosts of Spissistilus and vector/virus studies

Spissistilus festinus seasonal phenology

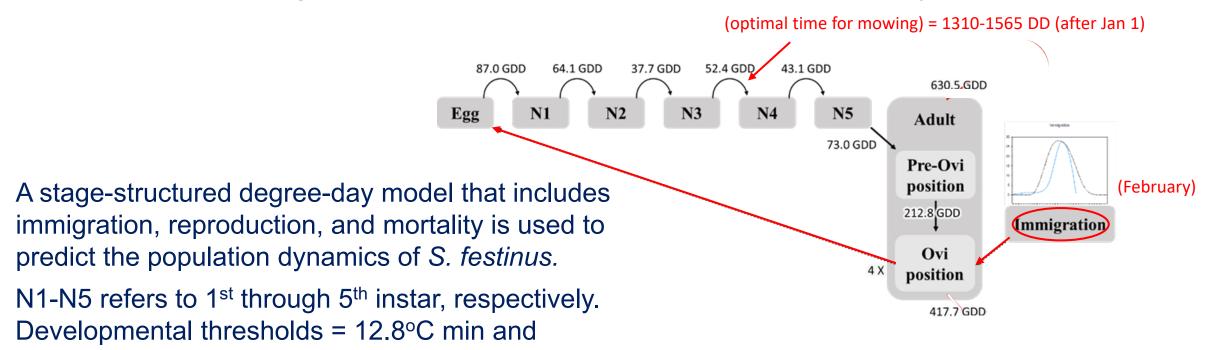
Preto, C.R., B.W. Bahder, E.N. Bick, M.R Sudarshana, and F.G. Zalom. 2019. Seasonal dynamics of *Spissistilus festinus* (Say) (Hemiptera: Membracidae) in a Californian vineyard. J. Econ. Entomol. 112(3): 1138-1144. https://doi.org/10.1093/jee/toz022

Spissistilus festinus seasonal girdling – Oakville

Bollinger, M.R. 2021. Seasonal and Within-Plant Distribution of Feeding Damage to *Vitis vinifera* caused by *Spissistilus festinus* (Hemiptera: Membracidae). Ch. 1, MS Thesis, Entomology Graduate Group, UC Davis.

Spissistilus festinus feeding and reproductive hosts

- Evaluated common vineyard weeds and cover crops as feeding and reproductive hosts of S. festinus
- Found that most legumes are feeding and reproductive hosts
- Very few non-legumes are reproductive hosts* (*exceptions: dandelion, common groundsel, field bindweed, blando brome)
- S. festinus was not found to complete its life cycle on grapevines in the field


Preto, C.R., M.R Sudarshana, and F.G. Zalom. 2018. Feeding and reproductive hosts of *Spissistilus festinus* (Hemiptera: Membracidae) found in Californian vineyards. J. Econ. Entomol. 111(6): 2531-2535. https://doi.org/10.1093/jee/toy236

Preto, C.R., M.R Sudarshana, M.L. Bollinger and F.G. Zalom. 2018. *Vitis vinifera* as a reproductive host of *Spissistilus festinus* (Say) (Hemiptera: Membracidae). J. Insect Sci. 18(6): 20, https://doi.org/10.1093/jisesa/iey129

Spissistilus festinus decision support model –

35.0°C max.

Predicts timing to initiate tilling/mowing to eliminate vineyard floor plant hosts of *S. festinus* in late winter or spring. Validated with field data collected in winter and spring 2020-21 in 5 North Coast commercial vineyard locations.

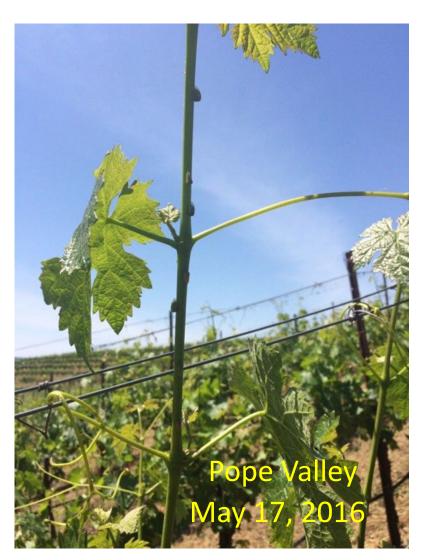
Bick, E.N., C.R. Preto, and F.G. Zalom. 2020. Timing the implementation of cultural practices for *Spissistilus festinus* (Hemiptera: Membracidae) in California vineyards using a stage-structured degree-day model. J. Econ. Entomol. 113(5): 2558-2562. https://doi.org/10.1093/jee/toaa165

GRBV acquisition and transmission -

Since GRBV transmission is circulative, then detecting GRBV in salivary glands should be a suitable proxy for transmission studies in plants.

salivary glands within head capsule

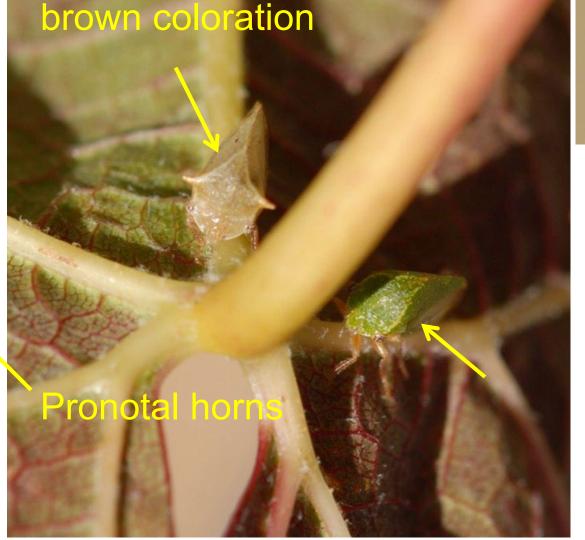
salivary glands removed from head capsule


Alternative method for evaluating candidate GRBV vectors

Developed and validated with beet leafhopper adults fed on beet curly top virus

Safeguards to ensure no contamination occurs

Tortistilus – another treehopper associated with California vineyards


- Adults can occur in massive numbers for a few weeks
- Mainly found in sloping vineyards where S. festinus are absent or in very low abundance

Tortistilus spp.

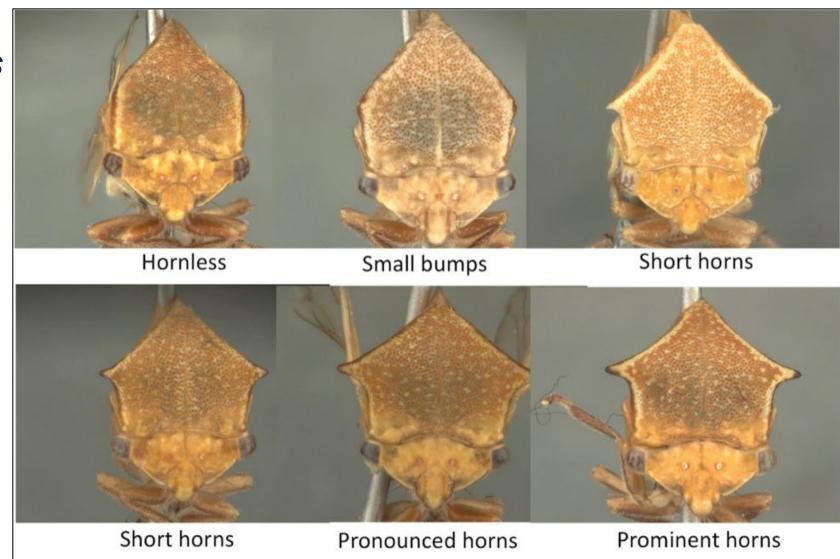
Determined by Dr. Dennis Kopp, Smithsonian

Green and

542 adults collected on June 2, 2017, from grapevines at same location

Different species or morphotypes?

Tortistilus spp.

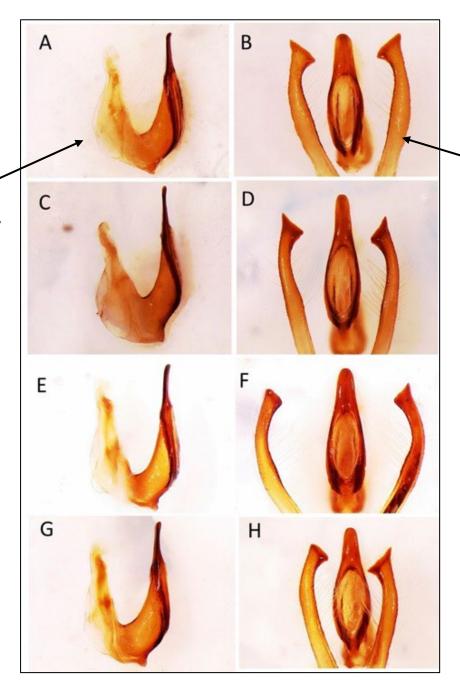

Horned - *Tortistilus albidosparsus*

Without horns Tortistilus wickhami
Tortistilus pacificus

Removed 6 legs of 2 specimens of each of the 4 morph for DNA sequencing

CO1 sequences indicated they are one species

Clinal variation of suprahumeral horns in females from a single Napa County vineyard collection


Tortistilus spp.

Identified by male genitalia

Profiles of male aedeagus posterior and anterior arms

A and B = horned brown
C and D = horned green
E and F = hornless brown
G and H = hornless green

Indistinguishable

Caudal views of male posterior aedeagus and posterior style arm

Sequences indicate they are one species

Sequence reads obtained by Illumina sequencing of DNA from four morphs of insects identified as *Tortistilus* spp. and collected on the same grapevines on June 2, 2017.

				Illumina reads	Coverage
Sample ID	Code	Color	Horned	(million)	(Gbp)
DS17-01	BH-	Brown	No	46.0	13.8
DS17-02	BH-	Brown	No	44.8	13.4
DS17-03	GH-	Green	No	47.3	14.2
DS17-04	GH-	Green	No	45.8	13.7
DS17-05	BH+	Brown	Yes	43.9	13.2
DS17-06	BH+	Brown	Yes	45.9	13.8
DS17-07	GH+	Green	Yes	44.5	13.4
DS17-08	GH+	Green	Yes	45.3	13.6

No difference between sequences for the 4 morphotypes

Tortistilus spp. mating study -

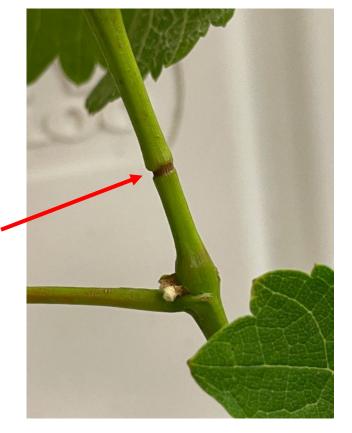
Matings of all combinations of horned and unhorned morphotypes collected as nymphs in late May 2018; individually reared to adults; morphotypes mated and allowed to oviposit on oak saplings; molted to adults from April to May 2019.

	Male parent Female parent		Male progeny		Female progeny	
Group	with horns?	with horns?	Horns	No horns	Horns	No horns
1	Υ	Υ	11	none	3	none
2	Υ	N	none	none	none	none
3	Υ •	→ N	1	8	none	8
4	N -	→ Y	none	none	1	1
5	N	Υ	none	none	none	none
6	N	N	none	none	1	2

All are Tortistilus albidosparsus

Oviposition scar on oak

Tortistilus albidosparsus


Necrotic girdle

Horned and hornless morphotypes

One generation a year

Overwinter as eggs in woody host (e.g. oaks)

Girdles similar to those of TCAH

Swollen girdle

Artificial Transmission System

Kahl et al., 2021

"An inherent feature of the ATS is its elimination of plant-specific barriers to transmission, which should result in higher rates of transmission than one might expect in a greenhouse or in nature."

ATS uses a microcapillary tube with sucrose solution behind a membrane in lid of the tube.

Insects collected from vineyards in British Columbia

Kahl et al. (2021) Identification of candidate insect vectors of *Grapevine red blotch virus* by means of an artificial feeding diet. Canadian Journal of Plant Pathology. 43: 905-913 doi.org/10.1080/07060661.2021.1930174

Artificial Transmission System Kahl et al., 2021

Taxonomically identified species	Total ID'd	PCR +ves
Campylenchia rugosa	21	0
Stictocephala basalis	1	1
Stictocephala bisonia	58	8
Stictocephala wickhami	1	0
Stictocephala brevitylus	1	0

- Both Stictocephala and Spissistilus are members of the treehopper tribe Ceresini
- Other insects evaluated (includes 32 leafhopper species, 5 sharpshooters and 2 aphids) did not transmit virus by ATS
- Tortistilus are also members of the treehopper tribe Ceresini

Generic name	Superfamily, Family	Total assessed in ATS	Taxonomically identified species	Total ID'd	PCR +ves
Treehopper	Membracoidea, Membracidae	82	Campylenchia rugosa	21	0
			Stictocephala basalis	1	1
			Stictocephala bisonia	58	8
			Stictocephala wickhami	1	0
			Stictocephala brevitylus	1	0
Leafhopper	Membracoidea, Cicadellidae	238	Amblysellus grex	7	0
			Athysamus argentarius	1	0
			Ceratagallia sp.	15	0
			Ceratagallia siccifolia	2	0
			Chlorotettix unicolour	1	0
			Colladonus montanus	1	0
			Colladonus reductus	6	0
			Deltocephalinae sp.	2	0
			Dikraneura absenta	3	0
			Doratura stylata	1	0
			Elymana inornata	1	0
			Empoasca sp.	1	0
			Endria inimicus	1	0
			Erythroneura ziczac	2	0
			Euscelidius sp.	14	0
			Euscelidius maculipennis	11	0
			Euscelidius variegatus	8	0
			Exitianus exitiosus	8	0
			Gyponana sp.	1	0
			Gyponana hasta	2	0
			Hebecephalus occidentalis	1	0
			Kybos exiguae	1	0
			Macrosteles quadrilineatus	5	0
			Muirodelphax arvensis	1	0
			Neocoelidia lineata	4	0
			Osbornellus borealis	1	0
			Psammotettix	7	0
			Psammotettix alienus	3	0
			Psammotettix lividellus	2	0
			Scaphytopius sp.	2	0
			Scaphytopius acutus	4	0
			Xerophloea peltata	6	0
Sharpshooter	Membracoidea, Cicadellidae	36	Graphocephala confluens	4	0
Froghopper	Cercopoidea, Cercopidae	35	Aphrodes sp.	1	0
g. Pro			Athysanus argentarius	1	0
			Graphocephala hieroglyphica	1	0
			Philaenus spumarius	21	0
Aphid	Aphidoidea, Aphididae	2	Acyrthosiphon pisum	1	0
Not ID'd	- quadratus a quadratus	123	ac, and proving product	0	0

Spissistilus festinus

Caged on GRBV+ vines in lab for 10 days for use in transmission assays.

GRBV+ source grapevine

Spissistilus festinus, 2022 ATS validation

4-day ATS directly following 10-day AAP on a GRBV+ vine, or after IAP on cowpea or alfalfa

AAP	IAP	IAP				Total
10 days	6 days	4 days	GRBV+	GRBV?	GRBV-	TCAH
GRBV+		ATS	5	0	5	10
GRBV+		ATS	3	0	11	14
GRBV+	Alfalfa	ATS	3	0	7	10
GRBV+	Cowpea	ATS	3	2	10	15

Tortistilus albidosparsus

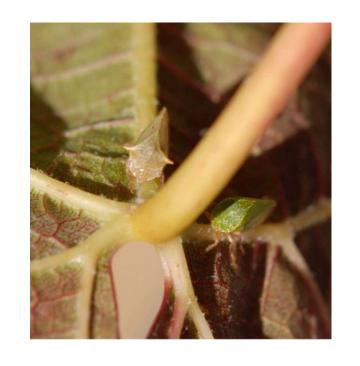
Collected from GRBV-infected vines in Pope Valley.

Caged on vines in field for 8 days and transferred directly to lab for use in transmission assays.

Bean plant

GRBV - grapevine

Tortistilus albidosparsus, 2022 ATS results


Tortistilus 8-day (caged) and 0-day (not caged) field AAP with 4-day ATS

AAP days	GRBV+	GRBV?	GRBV-	Total TCAH
Caged - 8	4	1	9	14
No cage - 0	2	3	7	12

Tortistilus albidosparsus, 2022 ATS results

8-day (caged) and 0-day (not caged) field AAP with 5-day IAP on GRBV- grapevine then 6-day ATS

AAP days	GRBV+	GRBV?	GRBV-	Total TCAH
Caged - 8	4	3	8	15
No cage - 0	5	1	13	19

Tortistilus albidosparsus, 2022 ATS results

Tortistilus 8-day field AAP and 5-day or 13-day lab supplemental lab AAP (13- or 21- days total) on either GRBV+ Pope Valley canes or GRBV+ Plymouth potted vines with 3-day IAP on GRBV- grapevine and 3-day ATS

Source Vine	GRBV+	GRBV?	GRBV-	Total TCAH
Pope Valley (13 d)	5	2	6	13
PV + Plymouth (13 d)	6	0	4	10
PV + Plymouth (21 d)	5	0	2	7

Tortistilus albidosparsus, 2022 Salivary glands results

Tortistilus 8-day field AAP and 5-day lab supplemental lab AAP (13-days total) on either GRBV+ Pope Valley canes or GRBV+ Plymouth potted vines with 3-day IAP on GRBV- grapevine and 3-day ATS

Source Vine	GRBV+	GRBV?	GRBV-	Total TCAH
Pope Valley	5	3	4	12
PV + Plymouth	9	1	0	10

Tortistilus albidosparsus studies in 2023

Validate and refine 2022 studies of GRBV transmission using an artificial transmission system and a factitious host

- Conducted transmission studies by caging uninfected nymphs collected on vetch outside of an infected vineyard on GRBV- grapevines in an untreated experimental vineyard, rearing them to adults, then caging them on GRBV+ grapevines in a commercial vineyard for AAP
- AAP of 7, 15, 24 and 33 days on the GRBV+ vines;
 control adults remained on GRBV- vines
- IAP of 5 days using artificial transmission system (ATS) or cowpea
- Dissected salivary glands from each insect
- qPCR assay results pending

Tortistilus albidosparsus studies in 2023

Will Tortistilus nymphs acquire GRBV and will the resulting adults transmit GRBV

- Conducted transmission studies by caging uninfected nymphs collected on vetch outside of an infected vineyard on GRBV- grapevines in an experimental vineyard, then caging them on potted GRVB+ grapevines or GRBV+ grapevines in a vineyard for a 10-day AAP
- Returned to GRBV- grapevines and allowed to mature to adults
- IAP of 4 days using artificial transmission system (ATS)
- Dissected salivary glands from each insect
- qPCR assay results pending

Avg. Ct of grape leaves on 5/15/23 = 22.9

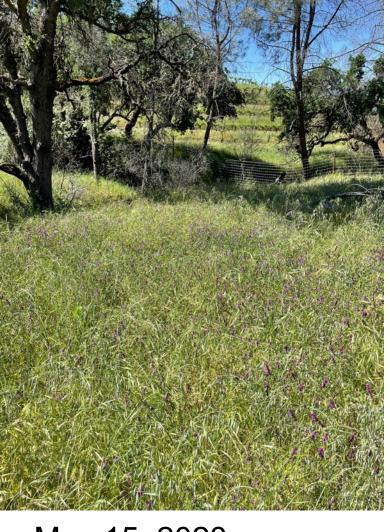
Tortistilus albidosparsus studies in 2023

Tortistilus biology

- Adult movement into vineyards
- Can *Tortistilus* utilize grapevines as a reproductive host?

Monitored adult *Tortistilus* with yellow sticky cards on fence lines between vetch patches and vineyard, and on trellis wires

• 3 vineyard blocks, 10 traps per block, then calculated average number per trap per day


Caged adult *Tortistilus* in mesh sleeve cages tied at base of canes and recorded oviposition scars

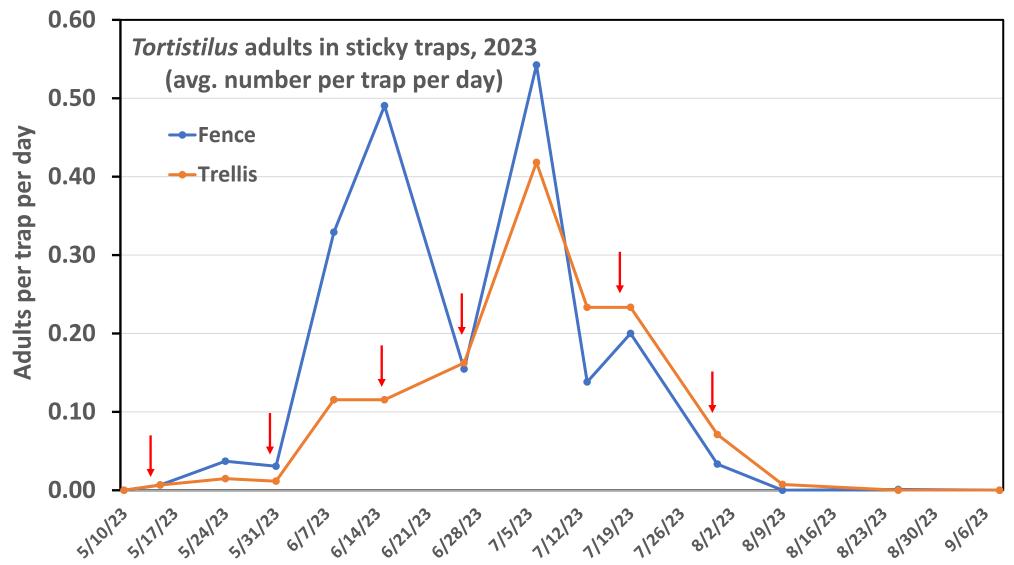
- 2 males and 2 females per cage
- Insects fed on GRBV+ or GRBV- grapevines
- Monitored and recorded adult mortality
- Determined where oviposition occurs on cane

Tortistilus overwinter as eggs on woody hosts

One generation a year Oak is a common host

May 15, 2023

Like many other treehoppers, *Tortistilus* nymphs develop on an alternate host – especially legumes, such as vetch.


Vetch in Oak Woodland Adjacent to Vineyard

May 15, 2023 June 15, 2023 July 19, 2023 May 31, 2023 June 26, 2023 July 31, 2023

Vetch in Oak Woodland Adjacent to Vineyard

Tortistilus adults captured in yellow sticky traps 3 vineyard blocks, 10 traps per block, avg number per trap, 30 traps total

Tortistilus can oviposit on grape canes

GRBV+ 0.59 scars per cane; 19 canes 82% of scars within two buds of base

GRBV- 0.33 scars per cane; 20 canes 69% of scars within two buds of base

Grapevine Red Blotch Virus and Vectors

<u>Acknowledgements</u>

Cindy Preto Kron, Brian Bahder, Michael Bollinger, Emily Bick, Nicole Nicola Cristian Olaya Arias, Kishore Reddy, Hazel Scully, Teresa Erickson, Lucia Varela, Rhonda Smith, Lynn Wunderlich Dennis Kopp

The work presented was funded by grants and agreements from:

CDFA/SCBGP #SCB14051
CDFA PD/GWSS Program #18-0398-000-SA
CDFA PD/GWSS Program #23-0379-000-SA
California Grape Rootstock Commission
USDA-NIFA-SCRI #2019-51181-30020
USDA-ARS NP303 National Program

