NEXT TRAITS - RUMINANTS

∕cceligen™

Dan Carlson – CSO – Recombinetics

Heritable Genetic Modification in Food Animals: Potentials and Concerns

February 27, 2024

Disclosures

What? Employee and Shareholder, Recombinetics/Acceligen

Why? Recombinetics is a for-profit company developing geneedited livestock for commercial applications

Agenda

Question: What traits might be pursued within the next two years?

- Principles of trait selection
- Example of deploying natural variants to adapt cattle for dairy production in Africa
- > Example of testing a novel variant for bovine Viral Diarrhea Virus
- Conclusions

Selecting Traits that Appeal to Producers and the Public

Trait/edit Selection Specific to Breed/Region

Objective = Improve Meat Quality in Tropical Environment

Objective = improve Meat Quality in Tropical Environment

How will Traits be Deployed?

More Applications will Leverage Multiplex Gene Editing

1980-2021

Single genes

Predictable New phenotypes

Crops: Insect and herbicide

resistance

Cattle: No horns, heat tolerance,

increased muscle

2022 -

Multiple genetic changes

Predictable Polygenic phenotypes

All Livestock: Above PLUS Disease

resistance, enhanced efficiency,

quality traits

Example 1 – Multiplex of Native Alleles to Enhance African Dairy

Multiple gene targets, heat tolerance & disease resilience, native alleles

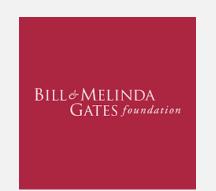
Precision Crossbreeding for African Dairy Production Systems

High-level Project Goals

- Generate dairy animals that contribute sustainable production gains for African dairy production systems.
- Deploy novel sequence variants delivered by multiplex gene editing
- Develop breeding systems to propagate gene-edited animals
- 2020-2026 time-frame

Project Duration

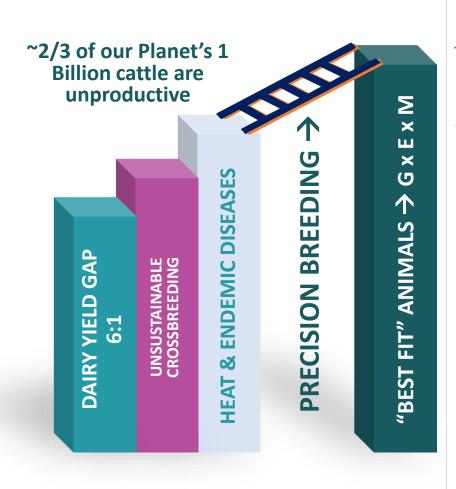
63 months

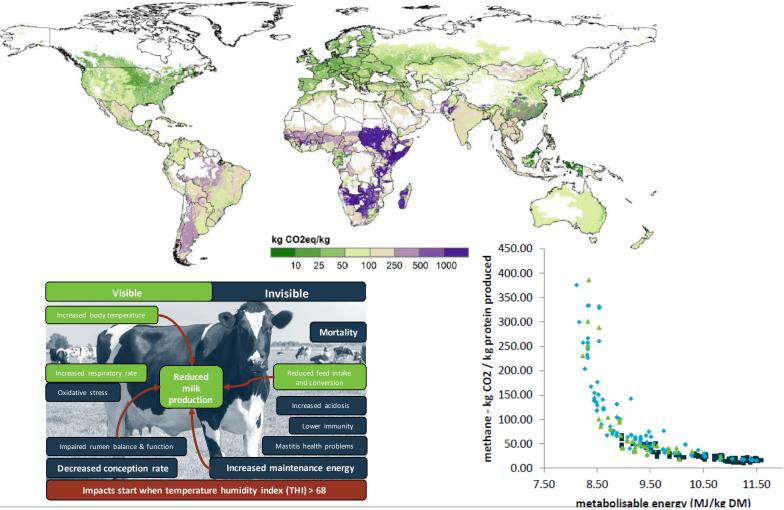

Project Inception

August 2020

~\$3.7M

Commercialization 2025+





Global Carbon Efficiency Addressed by Gene-Editing

Global greenhouse gas efficiency per kilogram of animal protein produced

Thamani Dairy Rollout

Breed Selection

Efficient production

Regional adaptation

Edit Selection

High regional impact

• Low prevalence in selected breeds

Gene Editing

Selection of donor genetics/material

Gene editing – Founder production

Validation and deployment

Performance testing

Breeding systems and extension

Breed Selection - baseline

GIR	category	Holstein
Avg. 7-9 liters per day	Milk Production	Avg. 25-30 liters/day
Adapted to tropical conditions and known for resistance to ticks and rinderpest	Other traits	Best suited for temperate climates

Breed Selection – production animals

Top milk producing Girolando cows from BASA farms (Brazil)

category	Girolando				
Breed Origin	First developed in Brazil & 21 million cows are in mil production				
Туре	Variable sizes, horned with black and white spotting 3/8 Gir & 5/8 Holstein				
Milk Production	Avg. 10-13 liters/day				
Other traits	More suited for tropical climates than Holstein, long- term selection for breeding goals in milk production & stability for adaptation				

Edit Selction

Led by Eui-Soo Kim and Tad Sonstegard

Girlando higher milk yield and carbon footprint

CH4
CH4
Girolando

CH⁴

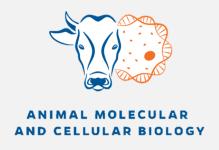
CH⁴

Carbon/kg milk

Girolando

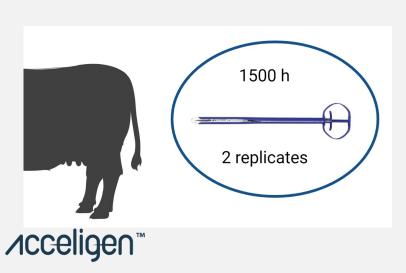
- 1,000 kg more milk; but,
- 0.2 more kg carbon/kg milk

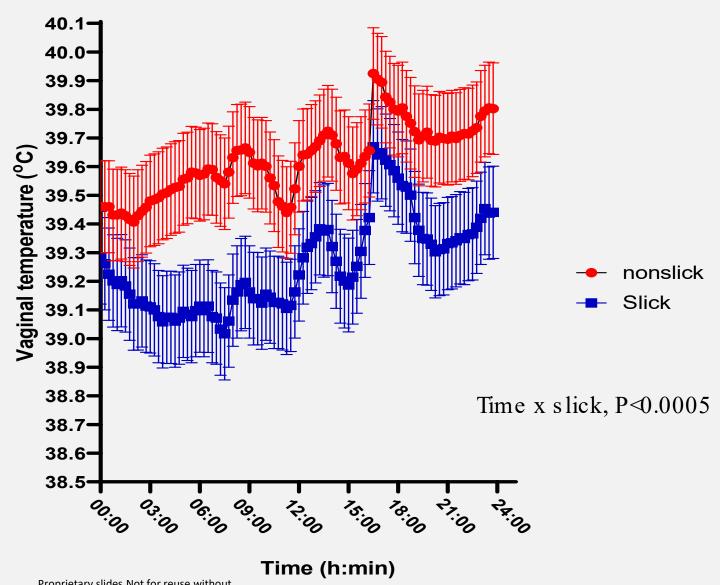
Why? Holstein genes - not adapted to heat even after 20 yrs of breeding


Heat stress - convergent adaptations

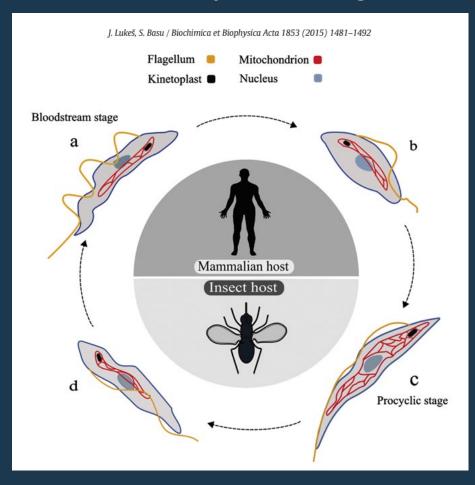
Slick causing mutations come in many forms – all in the same gene Nature found a way to adapt animals to the tropics

Breeds of Criollo cattle in the Caribbean Basin that transmit PRLR truncation mutations for the dominant SLICK trait

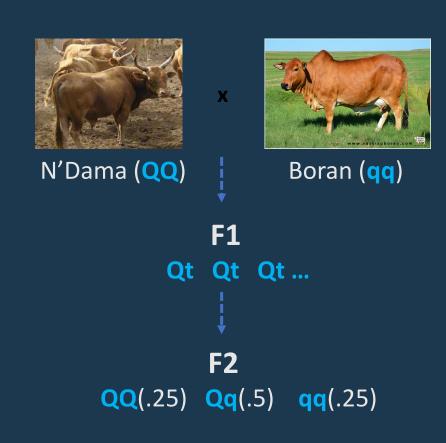

Consequences of gene editing of *PRLR* on thermotolerance, growth, and reproduction in cattle


<u>Camila J. Cuellar</u>¹, Thiago F. Amaral², P. Rodriguez-Villamil³, F. Ongaratto³, D.O-Martinez¹, J.D.A. Losano¹, E. Estrada-Cortés⁴, Q.A. Hoorn¹, D.O. Rae⁵, Jeremy Block⁶, B.W. Daigneault¹, S. Dikmen⁷, Joao Bittar⁵, Daniel F. Carlson⁴, Tad Sonstegard⁴, and P. J. Hansen¹

Differences in vaginal temperature during heat stress between slick and non-slick animals



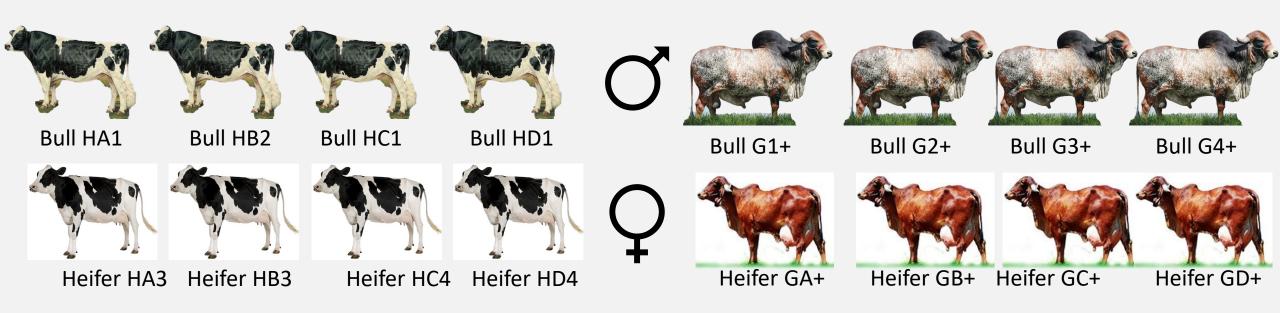
Proprietary slides Not for reuse without written permission from Acceligen


Heteroxenous life cycle = two obligate hosts

- Trypanosome infection is endemic in sub-Saharan Africa (SSA)
- ~37% of the continent is infested with tsetse fly - 65% of which could be used for livestock production
- T. brucei causes <u>sleeping sickness</u> in humans
- Responsible for ~50,000 deaths in humans each year

Trypanotolerant Quantitative Trait Loci (QTL)

- ➤ QTL of F2 between tolerant x susceptible cattle breeds (2011, Hanotte/ILRI)
- Tolerant breed: N'Dama, African bos taurus
- Susceptible breed: Boran, African bos indicus
- **>QTLs on BTA 2, 4, 7, 16, 27**
- BTA2: ARHGAP15, innate immune cell (macrophage, neutrophil) and blood cell number
- BTA7: QTL between 10-20 Mb region using microsatellites, FDX2 at 14.8 Mb (ARS12), ~10 functional candidate genes

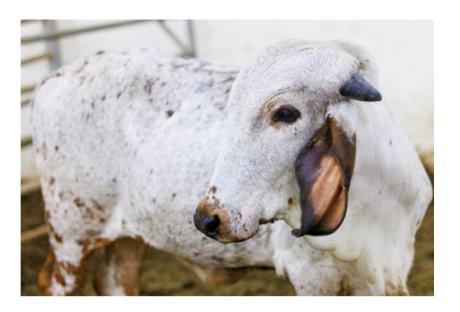

Edit Decisions Consider Allele Frequency

Edit	Breed	Trait	Euro-cont	Holstein	LA-Cri	Zebu	LA-Gir
	(n)		112	28	316	178	490
Holstein	SLICK	Thermo	0	0	84	0	0
Gir	GHR	Milk	9	7	5	0	0
-	DGAT	Milk	55	nd	0	9	6
-	PLAG1	Stature	36	0	44	100	100
Both	DHRS4	Tryp	25	15	18	31	13
Both	FDX2	Tryp	1	0	7	20	0
Gir	ARhGAP15	Tryp		Low*		Low*	
Holstein	MARCO	M. Bovis	2	2	11	76	100

Ambitious Goals

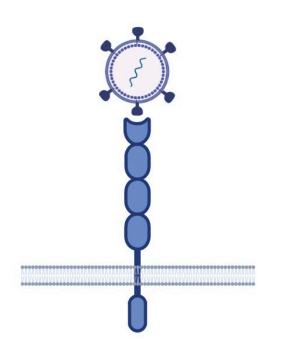
16 genetically diverse founders with 4 edits each Timeline < 2 years

- ➤ 13 edited lines
- ➤ 10 live in herd
- > 1 pregnancy

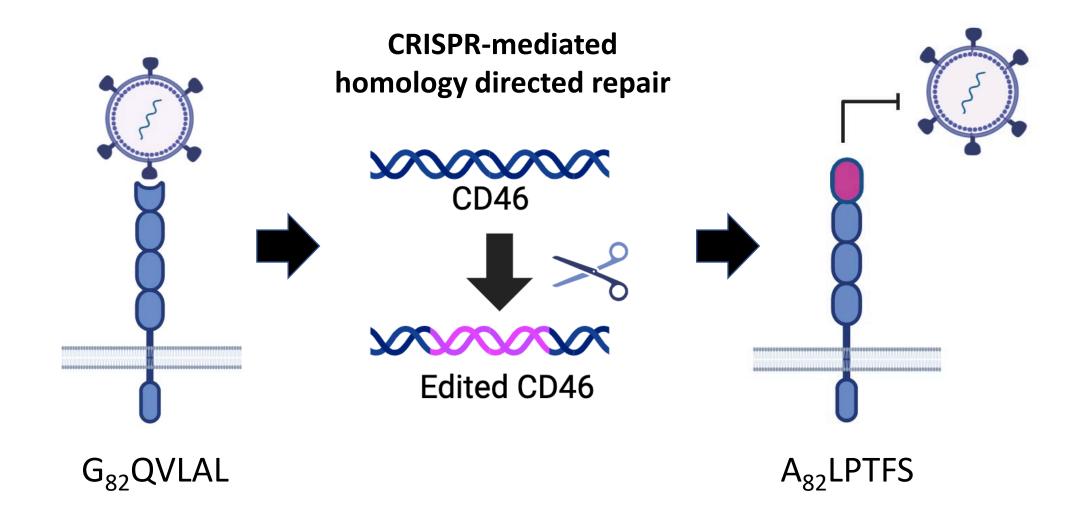

- ▶ 9 edited lines
- ➤ 1 live in herd
- > 7 pregnancies

First Gene-Edited Calf with Reduced Genetic Susceptibility to Bovine Viral Diarrhea Virus

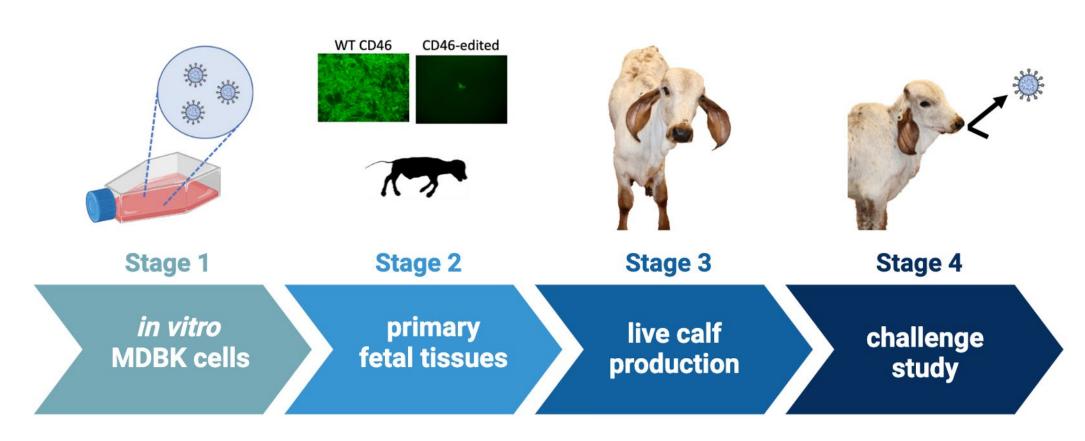
Drs. Aspen M. Workman, Micheal P. Heaton USDA, ARS, US Meat Animal Research Center



CD46 is the cellular receptor for BVDV

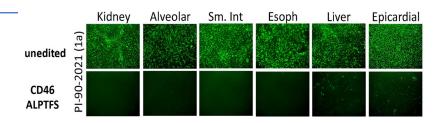


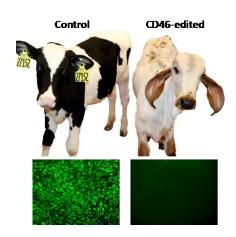
Essential Functions:

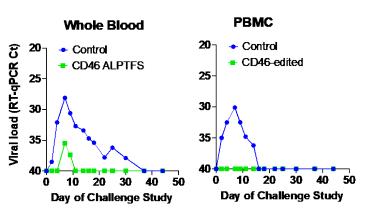

Complement regulator
T-cell activation
Autophagy
Reproduction

Knockout of *CD46* cannot be employed as a strategy for controlling BVDV infection cattle

Hypothesis


Experimental Approach




stepwise experiments to evaluate the impact of *CD46*-edits on BVDV susceptibility and calf health

BVDV Summary

- CD46-edited fetal kidney, lung, small intestine, esophagus, liver, and heart cells all had significantly reduced susceptibility to BVDV when infected *ex vivo*.
- Primary skin fibroblasts, lymphocytes, and monocytes from the live *CD46*-edited calf had dramatically reduced BVDV susceptibility.
- The strong reduction in both the duration and peak viral RNA load in the blood of the *CD46*-edited calf was consistent with reduced viral replication in tissues *in vivo*.

Conclusions

- > What traits might be pursued within the next two years?
 - Predominantly naturally occurring variants
 - Regulatory advantages
 - More variants will be mined with impact on resilience, efficiency, and quality

- How will they be deployed?
 - Multiplexing to address more challenging objectives
 - Best chance to adapt productive genetics to new environments
 - Enables stacking of variants that are QTL or unproven candidates

Thank You

tad@acceligen.com

https://www.acceligen.com/

TransOva Genetics

Diane Broek
Cody Kime
Dan Faber
Stephanie Anderson

Kyra Martins
Jon Bostrom
Eui-Soo Kim
Yamlak Sinebo
Carsten Knutsen
Ohad Gafni

Discussion topics

- Should native QTL be deployed without confirmation of impact on traits?
- ➤ What level of trait characterization is required for novel alleles when they are:
 - Informed by variation in other species?
 - > A product of rational design?
 - > A product of (in vitro) evolved gene function?