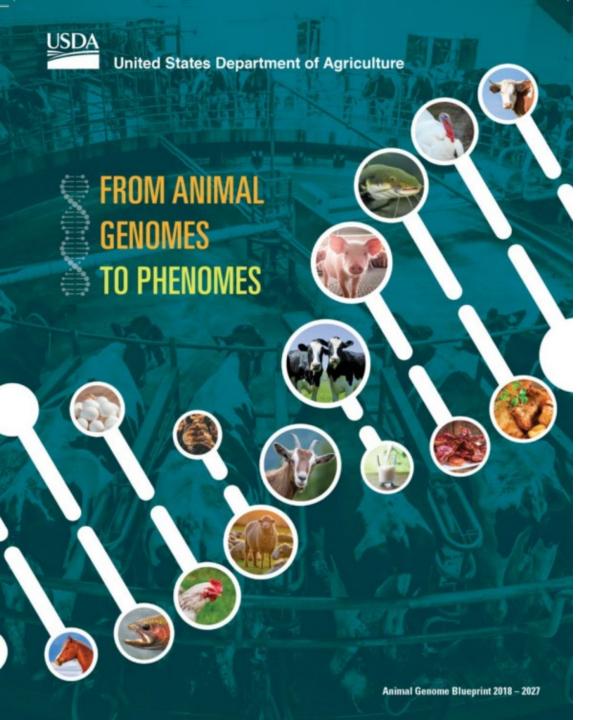


Agricultural Animal Biotechnology Genome Editing



Steven J. Moeller, PhD

National Program Leader for Food Animal Production

Agricultural Research Service Steven.Moeller@usda.gov

NASEM Workshop - February 2024

Genome to Phenome: Improving Animal Health, Production, and Well-Being – A New USDA Blueprint for Animal Genome Research 2018–2027

https://doi.org/10.3389/fgene.2019.00327

Goal 1: Providing Nutritious Food for a Growing Human Population

Goal 2: Improving Sustainability of Animal Agriculture

Goal 3: Increasing Animal Fitness and Improving Animal Welfare

Goal 4: Meeting Consumer Needs and Choices

U.S. DEPARTMENT OF AGRICULTURE

USDA SCIENCE

AND RESEARCH STRATEGY, 2023 - 2026:

Cultivating
Scientific Innovation

USDA'S FIVE SCIENCE PRIORITIES

Priority 1:

Accelerating Innovative Technologies & Practices 1.1 Inclusive Innovation Culture

1.2 Technology-Enabled Decision Support Systems

1.3 Collaborative Intelligence Tools

1.4 Bioengineered Traits and Customizable Management Practices

1.5 Diversified Future Systems Priority 2:

Driving Climate-Smart Solutions 2.1 Climate Change Impacts

2.2 Climate Change Mitigation

2.3 Adaptation to a Changing Climate

2.4 Decision Support Tools

2.5 Bioeconomy

Priority 3:

Bolstering Nutrition Security & Health 3.1 Inclusive Food Systems

3.2 Data Transparency

3.3 Predictive Analytics

3.4 Pathogen Virulence Factors

3.5 Food Systems Understanding & Impact Priority 4:

Cultivating Resilient Ecosystems 4.1 Genomics & Genome Editing

4.2 Microbiome Research

4.3 Sustainable Agro-& Aquatic-Ecosystems

4.4 Infectious Disease & Pests

4.5 Biodiversity

Priority 5:

Translating Research into Action 5.1 Communication

5.2 Education & Workforce Development

5.3 Data Assets

5.4 Ag Science Policy

Bioengineered Traits and Customizable Management Practices

Objective 1.4

Improve sustainable production by developing novel selectable plant and animal traits, as well as advanced and customized agricultural and forestry management practices.

Genomics and Genome Editing

Objective 4.1

Determine the DNA sequences of plant and animal genomes and use this information to apply molecular biology techniques, such as genome editing and other advanced breeding methods to improve sustainability through research, including leveraging public-private partnerships and open science approaches.

Photo courtesy of Dr. Tim Smith

USDA SCIENCE & RESEARCH STRATEGY 2023-2026

Priority 5:

Translating Research Into Action

Getting USDA Research Solutions to Farmers

Animal Agriculture ResearchUSDA as Stewards of Federal Funds

USDA ARS - Congressionally Appropriated Research Funding

- Stakeholder engaged research priority setting
- Permanency in year-to-year funding
- Agricultural Research in support of producers & communities of all sizes
 - Mission: ARS delivers scientific solutions to national and global agricultural challenges

USDA NIFA – Congressionally Appropriated Funding

- Federal Funding to Morrill Act Institutions (1862, 1890, Tribal)
- Federal Funding through Hatch and Smith-Lever Acts
- Competitive Grants Funding in Priority Areas
 - Mission: Provide leadership and funding for programs that advance agricultural-related sciences

USDA ARS Animal Production and Protection National Programs

- > 101 Food Animal Production
 - 2 projects involve genome editing
 - 13 projects involve animal genomics
- > 103 Animal Health
 - 1 project directly involves genome editing
 - Multiple projects evaluate genomics of disease-causing organisms and genetic tools for disease control strategies
- > 104 Veterinary, Medical, and Urban Entomology
 - Multiple genetics and genomics projects
- > 106 Aquaculture
 - 1 project involves genome editing
 - Multiple projects involve genomics for selection and improvement

USDA National Institute of Food and Agriculture (NIFA)

Funding

- Biotechnology Risk Assessment Research Grants (BRAG)
 (plants, animals, microbes) \$6 million per year
- Animal Genome Editing: \$28+ million in previous 5 years

Food Species:

- Cattle: Beef, Dairy
- Swine
- Poultry: Chickens, Quail
- Fish: Trout, Catfish, Tilapia

Animal Pests:

- Screw worms
- Ticks

Research on Traits:

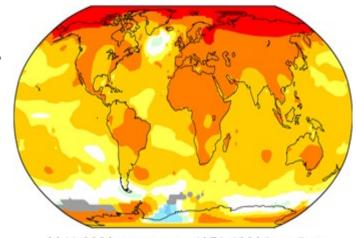
- Disease Resistance & Resilience: PRRSv, BVD, TB, Influenza (avian, swine)
- Environment & Climate Change: Heat Tolerance, lower GHG emissions, lower waste outputs
- Animal Welfare & Improved Farm Practices: gender skewing, hornless, castration-free, no tail docking, in-ovo sexing
- Production & Diversity Traits: meat tenderness,
 reproduction, growth rate, rare breed preservation
- Treatments & diagnostics: Vaccines, pest controls

USDA Animal Biotech and Genomics Research

ARS Center – GnEd Research

ARS Center – Genomics Research Supporting GnEd

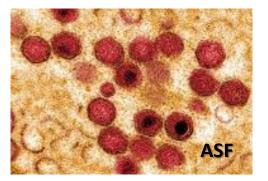
NIFA support – GnEd Research

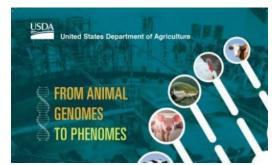

Future of (Animal) Agriculture

Unprecedented agricultural challenges globally

- Climate change
- Existing & Emerging disease and pest threats
- Increased production efficiency
- Reduced/limited land & water resources

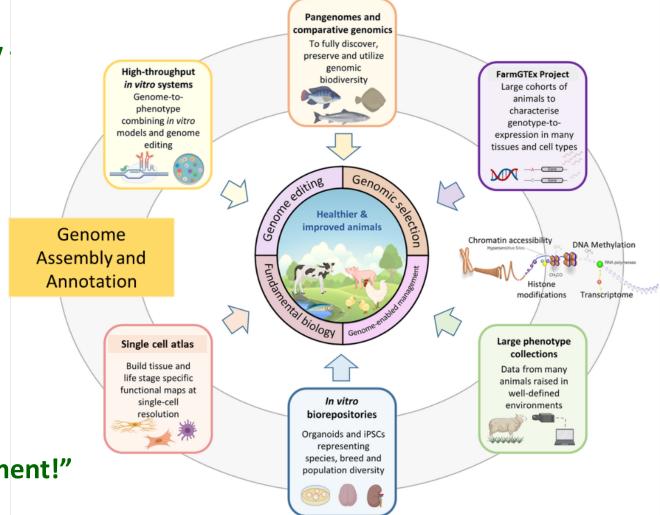
A need to transform agriculture


- Increase resilience
- Decrease environmental impact


2011-2020 average vs 1951-1980 baseline

Biotechnology Supporting SOLUTIONS!

Global challenges require Global responses and Cooperation



Genome Toolbox Expansion

Unprecedented Technological Advances and Scientific Discovery Expanding Genomic Capacity to Improve Livestock

"Next-Generation Genetic Improvement!"

Perspectives on Biotech in Animal Agriculture

Genome Edits

- Mutations are the source of evolutionary species differentiation and within species variation
- Intentional Change(s) in a Genome, as proposed within a species, investigate natural mutation potential and apply new science to help solve problems
 - Science driven edit targets
 - Outcomes are not expected to be outside of impacts of natural mutation
 - Necessary to conduct science-based evaluation of outcomes (intended and any unintended outcomes)
- Edits may enhance accuracy and improve the rate of genetic improvement
 - Demonstrated positive impacts in plants can be mimicked in animals
 - Rapid and more efficient introduction of valued traits into breeding populations
 - More choices for the producer
- Downstream Effects
 - Reduced Antimicrobial Resistance
 - Reliably safer food products

Animal Genome Editing Research Challenges

TIMELINES LONG

in-vitro to *in-vivo* often years

+

Additional years to population introgression

PATHS CURVY

Success Rates often Low

Trial & Error = Research

INPUTS COSTLY

Technology, Infrastructure, Personnel

(In)Consistency of funding

Animal Genome Editing Research Application Challenges

Accessibility

Public access for public funded efforts

Life-cycle studies are essential, but challenging to complete due to many factors

Partnerships

Who, what, where, when, & how?

Public – Private Agreements

ROI

Intellectual Property Agreements

Editing Technology Licensing

Food Systems Focused Efforts

Competing Interests

Prioritization

Stakeholder input and support are essential – We need your input on how to implement and move forward

IMPACT: Add Even Greater Value to Genetically Superior Animals

	USDA dairy cattle genetic-economic selection index (year introduced)										
Trait	PD\$ (1971)	MFP\$ (1976)	CY\$ (1984)	NM\$ (1994)	NM\$ (2000)	NM\$ (2003)	NM\$ (2006)	NM\$ (2010)	NM\$ (2014)	NM\$ (2017)	h²
Milk	52	27	-2	6		0	0	0	-1	-1	0.20
Fat	48	46	45	25	4	22	22	19	22	24	0.20
Protein		27	53	43	Evt	ra-SUF	PERIOF	16	20	18	0.20
Productive life				20		ia Joi	LINIOI	22	1		0.08
Somatic cell score			Reduction in GHG		_9 AN		IIMAL	-1	Desired Phenotype		0.12
Udder composite		"	TOTIO)	7		6	7	8	7	0.25
Feet/legs composite		Genotype fits			4		3		3	3	0.17
Body size composite				nment xE)	-4	-3	-4	-6	-5	-6	0.42
Daughter pregnancy rate			(U	XC)	Multi-Diseas Resistance		9	1	hermo-	7	0.04
Calving ability						6		Resilience 5		0.048	
Cow conception rate	A	Add <u>Multiple</u> Desirable traits to already Superior Animals							2	2	0.016
Heifer conception rate									1	1	0.01
Cow liveability										7	0.0062

