Gene Editing of Livestock

Jon M. Oatley, PhD
College of Veterinary Medicine
Washington State University

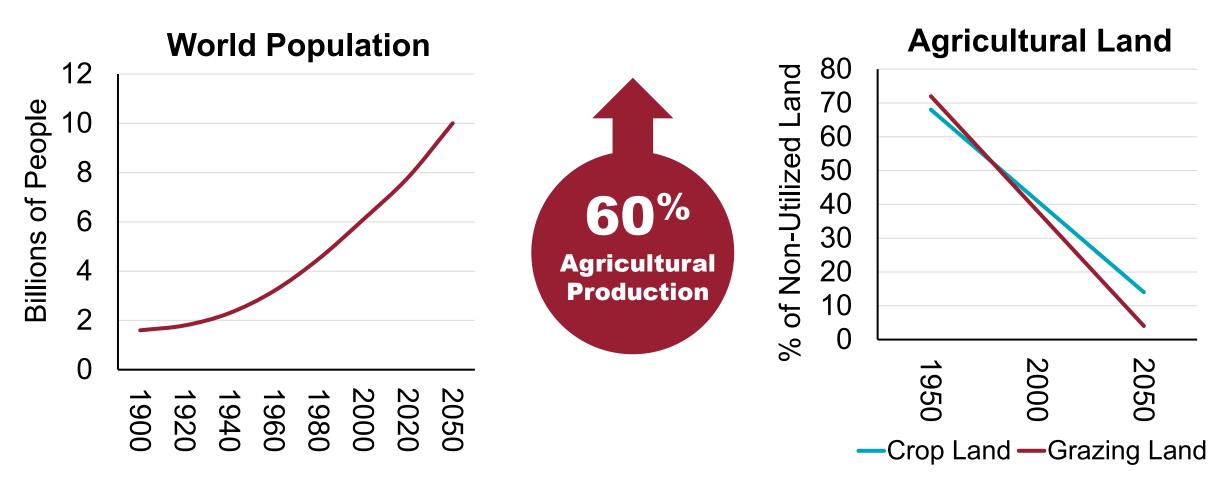
Presentation Primer

1. Why humans work to modify the genome of food animals

2. Strategies to edit genes in livestock cells

3. Strategies to generate gene edited livestock

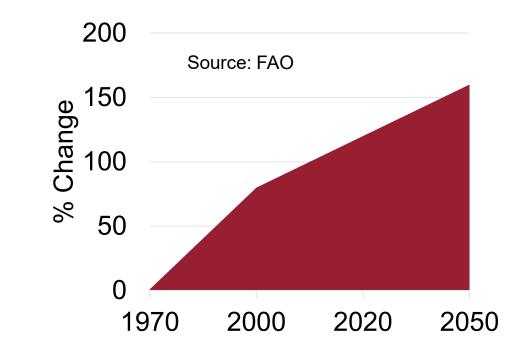
4. Conscientious considerations


Animal Genetic Engineering

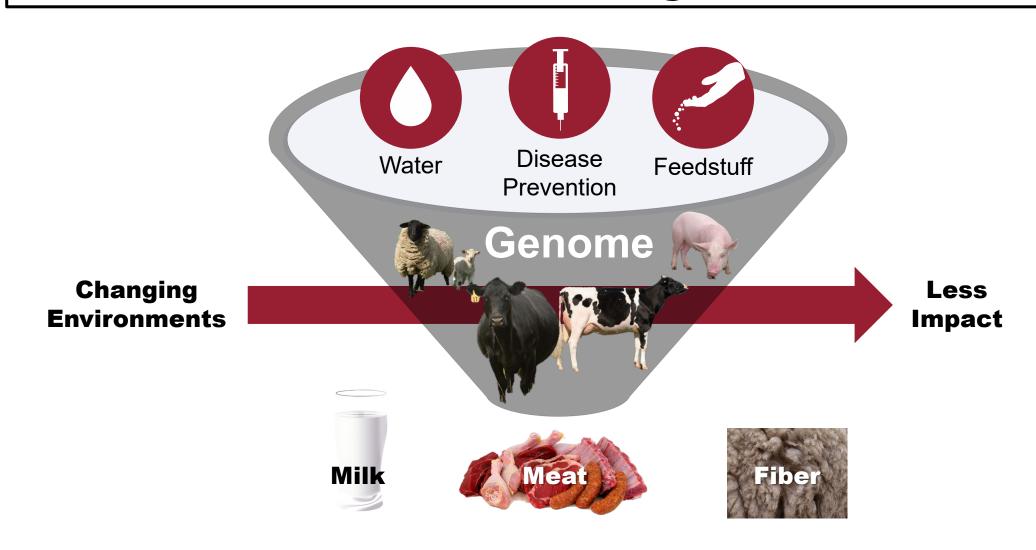
Genome Shaped via Human Intervention

Food (In)Security

Source: US Census Bureau


Source: Food and Agricultural Organization of the United Nations

Global Problem

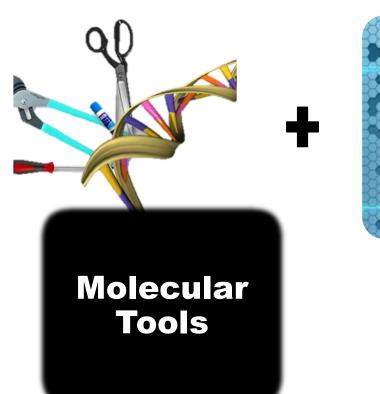


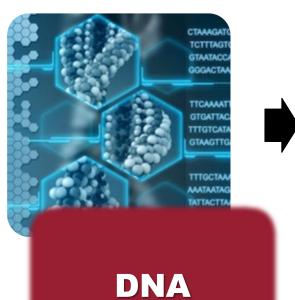
Demand for Animal Protein

Livestock Production Efficiency & Resiliency

Selective Breeding Shapes the Genome

+ Genetic Gain, but...




Based Primarily on Observable Phenotype

5+ Generations & 10+ Years for Incremental Changes

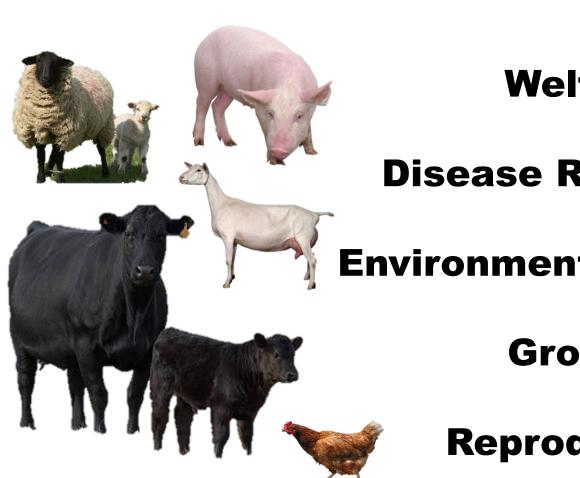
Genetic Drift & Inadvertent Negative Phenotypes

Promise of Gene Editing

DNA Information Efficient & Precise Genetic Engineering 1-2 Generations

Gene Editing Strategies

CRISPRs



TALENS

Absence of Foreign DNA Sequence

Genomic Changes that Could Arise in Nature

The Leading Edge of Gene Editing for Livestock Resilience

Welfare

Disease Resistance

Environmental Adaption

Growth

Reproduction

Future of Food Security

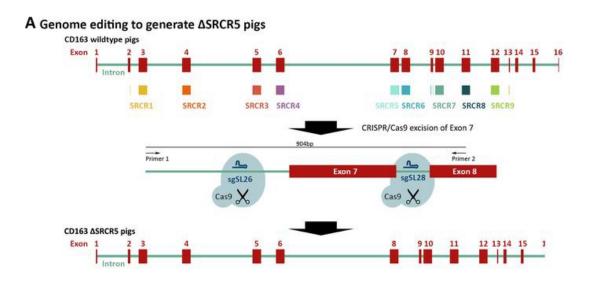
Strategies to Edit Livestock Genomes Conventional & Next Generation

Conventional Strategies are the Primary Use with Food Animals

Site-Specific DNA Double Strand Break (DSB)

- Non-Homologous End Joining (NHEJ) Random Insertion-Deletion Mutations (INDELs)
- Homology Directed Repair (HDR) Sequence-Specific Insertions or Replacements

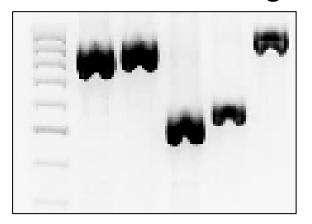
Cas Variants


	Cas9	Cas9 Nickase (D10A/H840A)	Cas12
Cas Family	Type II	Type II	Type V
PAM sequence	G-rich	G-Rich	T-rich
Cut type	Blunt double-strand, 3 bp upstream of PAM	Blunt single strand, 3 bp upstream of PAM	Staggered, 18–23 bp downstream of PAM
RNAs needed	crRNA + tracrRNA	crRNA + tracrRNA	crRNA
Major Application	Mammalian gene editing	Mammalian gene editing	Diagnostics

Generate gDNA breaks for INDEL or HDR

Livestock w/ Engineered INDEL Alleles

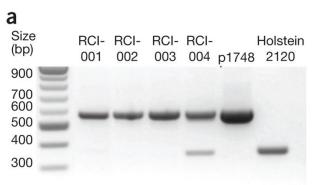
PRRS Resistant Pigs – Editing CD163 University of Missouri & Roslin Institute



Burkard et al., 2018, J Virol

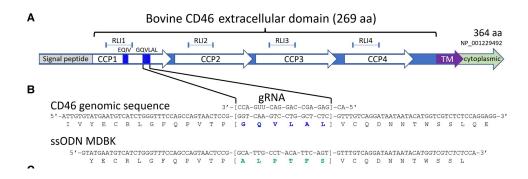
Surrogate Sires – Editing *NANOS2*Washington State University

Knockout via Large Exon Deletion

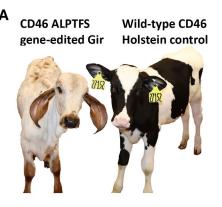

160 bp Δ / 510 bp Δ

Miao et al., 2019, Biol Repro; Ciccarelli et al., 2020, PNAS

Livestock w/ Engineered HDR Alleles


Hornless Dairy Cattle – Polled Allele Recombinetics

212 bp Introgression to Replicate Celtic Polled Allele



BVD Resistant Cattle – Editing CD46 USDA-MARC & Recombinetics

6AA Substitution – Viral Binding Domain

Workman et al., 2023, PNAS Nexus

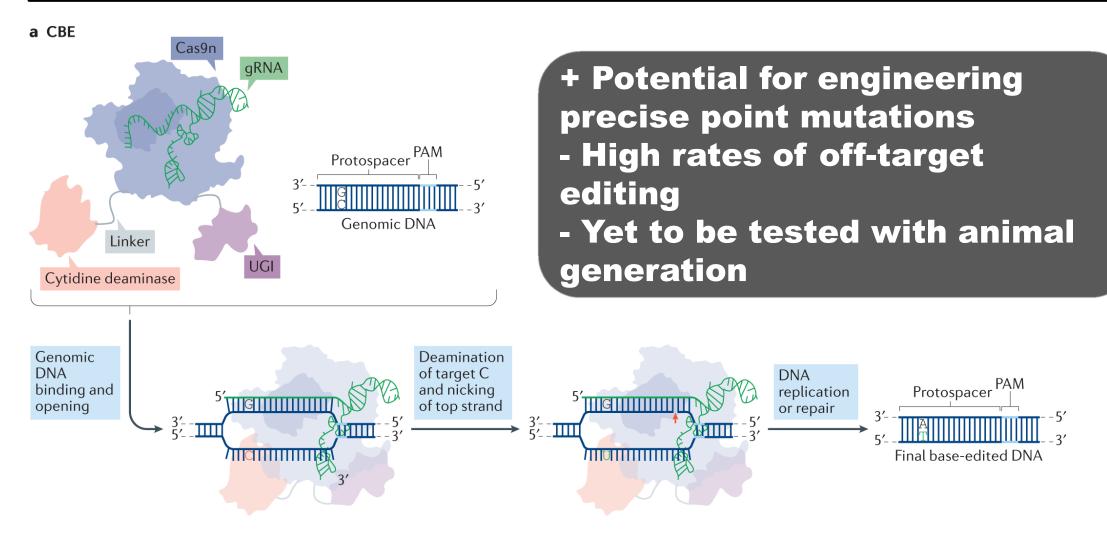
Carlson et al., 2016, Nat Biotech

Array of Editing Outcomes

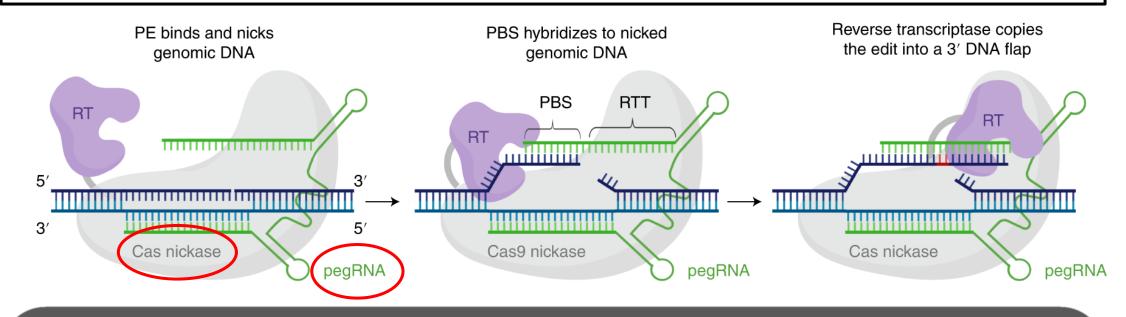
Peer-Reviewed Scientific Literature + Washington State University (Unpublished Data) *Mice, Cattle, Pigs, Goats, and Sheep*

Allelic Inactivation/Alteration via INDELs

- **❖Range of modifications (1 bp to >1 kb)**
- **❖Insertions from other chromosomes**
- **❖Retrotransposon insertions (e.g. LINE1)**
- **❖Mono-allelic or bi-allelic editing**
- *Alleles with same edit or each allele edited differently


Site-Specific Insertion/Replacement via HDR

- **❖Designed edit with no unexpected modification**
- **❖Designed edit with unexpected INDEL**
- Rearranged insert
- **♦** Concatemer integration


What transmits through the Germline to the Next Generation is Key

Next Generation Editing Expand the Toolbox for Specificity & Precision

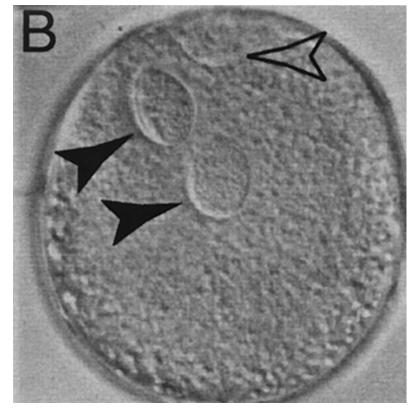
Base Editing

Prime Editing

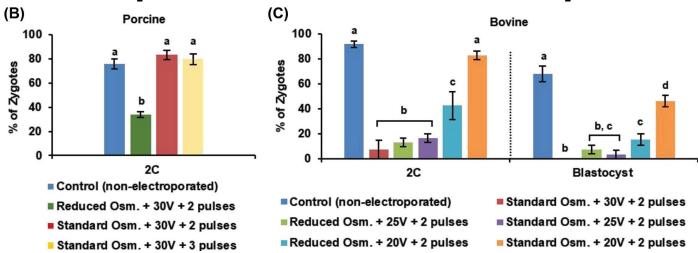
- Low efficiency in mammalian embryos
- Limited reports of success in livestock
 - Zhou et al., 2023, BMC Genomics: ~1% efficiency with sheep embryos
- * Recent report of increased efficiency in mice
 - Kim-Yip et al., 2024, Nat Biotech: ~60% efficiency with mouse embryos

Strategies for Generating Food Animals Possessing DNA Edits

Goal Germline Transmission = Heritable


Current: Edited Embryos

Pregnancy Offspring (Founder)


Zygote Manipulation Introduction of Editing Components

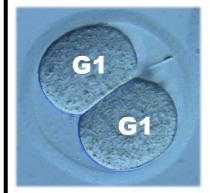
Bovine Zygote

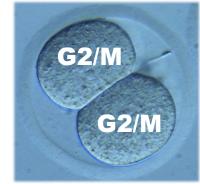
Chan et al., 1998, PNAS

- Viral Vectors
 - Limited utility for livestock
- Microinjection
 - Cytoplasmic deposit but technical skill needed
- Electroporation
 - **♦ Simple but not standard across species**

Miao et al., 2019, Biol Reprod

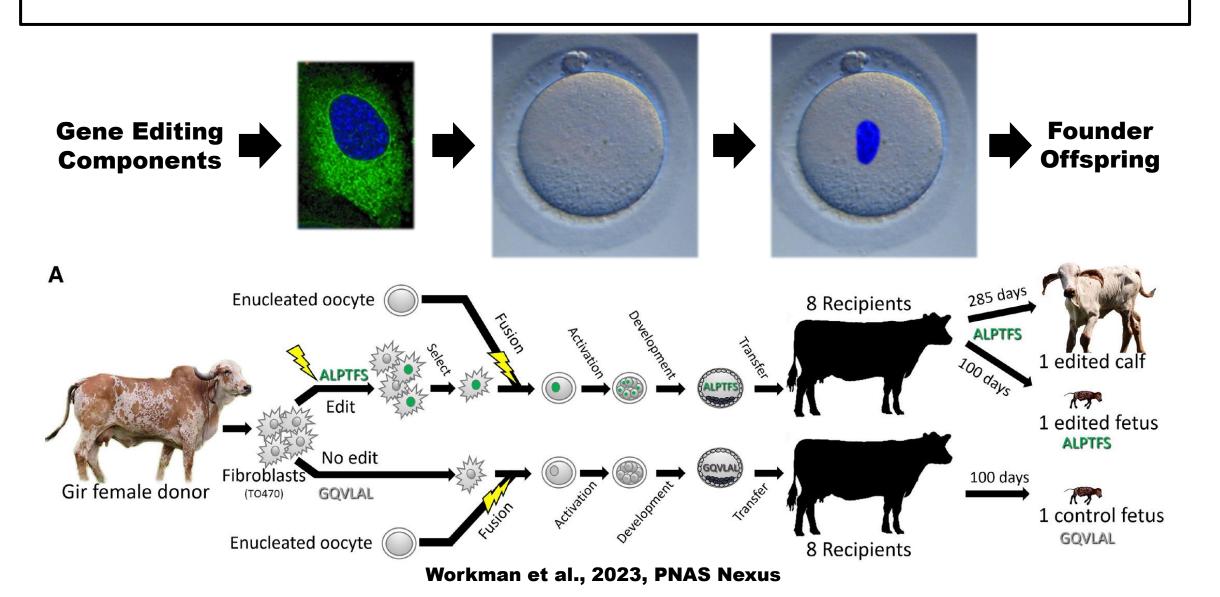
2C Microinjection or Electroporation Introduction of Editing Components




Higher Rate of HDR vs Zygote Manipulation

Knock-in	Repair Method	Embryos Transferred	Offspring	+ Founders
Sox2-mCherry	Plasmid	150	32	3 (9%)
Nanog-mCherry	ssDNA	75	25	2 (8%)
Gata6-Halo	ssDNA	60	3	3 (100%)
R26-CAG-H2B- miRFP703	Plasmid	75	22	2 (9%)
Arrdc5-3X FLAG	ssDNA	50	8	4 (50%)
Arrdc5-eGfp	ssDNA	50	12	2 (17%)

<u>Caveat/Limitation</u> Increased Mosaicism


2N = 4 Copies 4N = 8 Copies

Gu et al., 2018, Nat Biotech Giassetti et al., 2023, Nat Comm

Editing Somatic Cell DNA + Cloning

Regardless of strategy... intended output is founders & Key is Edited Germline

Conscientious Considerations

Form of Gene Editing Components Introduced to Embryos & Cells

Editors

Repair Template

- Plasmid Expression
 - Risk of foreign DNA integration
- Synthesized RNA
 - **⇔** sgRNA
 - ❖ Cas9 mRNA
- ❖ Ribonucleotide Protein (RNP)
 - * sgRNA + Cas9 Protein
 - Standard for many applications

- Plasmid Based
 - Risk of foreign DNA integration
- Synthesized DNA
 - * ssDNA (ssODN) size limits
 - ❖ Long dsDNA
- Adeno Associated Virus (AAV)
 - **❖ Efficient for HDR but...**
 - Potential for foreign sequence integration (Luqman et al., bioRxiv)

Mosaicism

- Genotyping detection of multiple different alleles in Founders
- **❖ Soma vs Germline**
- If germline mosaic, what will transmit to offspring?
- Only one edited allele will be inherited, but...which one?

CRISPR-Cas9 Editing *NANOS2* in Pigs

С				
	Boar #	Ear DNA Sequencing	Sperm DNA Sequencing	Genotype
	136	5bp∆/3bp∆/3bp (insertion)	5bp∆/3bp∆/3bp (insertion)	Mosaic
Γ	137	1bp (insertion)/1bp∆	1bp∆/3bp∆	Mosaic
	142	3bp∆/5bp∆	3bp∆/200bp∆	Mosaic
	143	3bp∆/10bp∆	3bp∆/10bp∆/5bp∆	Mosaic
Ī	144	1bp (insertion)/4bp∆	N/A	Knockout
	146	4bp∆/150bp∆	N/A	Knockout
	147	3bp∆/5bp∆	N/A	Heterozygous
ſ	148	1bp∆/3bp∆	1bp∆/3bp∆	Heterozygous
	251	1bp∆/21bp∆	1bp∆/3bp∆	Mosaic

Park et al., 2017, Sci Reports

Germline Transmission is Key!

- Not all founders with edits genotyped in soma transmit through the germline
- * Mosaicism in germline also occurs
- Litter bearing vs singleton consideration
- Future is direct germline editing

Knock-in	Method	Embryos Transferred	Offspring	+ Founders	Germline Transmission
Sox2-mCherry	Plasmid	150	32	3 (9%)	8%
Nanog-mCherry	ssDNA	75	25	2 (8%)	47%
Gata6-Halo	ssDNA	60	3	3 (100%)	46%
R26-CAG-H2B-miRFP703	Plasmid	75	22	2 (9%)	41%
Arrdc5-3X FLAG	ssDNA	50	8	4 (50%)	62%
Arrdc5-eGfp	ssDNA	50	12	2 (17%)	100%

On-Target vs Off-Target Edits

- Stability of on-target edits
 - If it does change, how to account for natural evolution of DNA?
- Potential for off-target editing to reduce animal welfare and compromise food safety
 - **❖Do we need to assess?**
 - **♦ What will the standard practice be?**
 - Can we really distinguish off-target from random mutations?
 - **♦ Is this an impossible box to check?**
 - Should phenotype be the guide?
- Enhanced strategies may mitigate concern
 - Cas9 Variants like Cas9-HF1 are reported to reduce nonspecific contacts, yet to be tested with livestock

Takeaways

- The future of global food security needs genome engineering of livestock
 - √ Gene editing offers the means to engineer resiliency and efficiency
- Primary strategies for livestock are conventional TALEN and CRISPR-Cas9 to generate embryos with INDEL and HDR gene edits
 - **Expected and unexpected DNA modifications can occur**
 - √Strategy of choice and research design matter
- **Science** is the Guide and the Solution!

The Future of Food Security

Minimal Input + Maximal Output

Resilient & Resistant

Precision
Engineered
Food Animal
Genomes

Climate Smart

Matched to Environment

THANK YOU

joatley@wsu.edu