

GENE EDITING IN THE CONTEXT OF GENOME VARIATION

Elena Rice CSO

GENOME INFORMATION AVAILABLE IN PUBLIC DATABASES

Genome Information	Human (GRCh38.p14)	Mouse (GRCm39)	Cow (ARS-UCD1.3)	Pig (Sscrofa11.1)
Base pairs	3,099,750,718	2,728,222,451	2,711,209,831	2,501,912,388
Coding genes	23,132	21,955	23,842	22,063
Non-coding genes	28,471	18,008	11,707	13,154
Short variants	1,110,229,688	122,449,497	96,494,428	71,053,233
Structural variants	7,861,655	791,878	18,942	224,038

Genome sizes are very similar

Similar number of coding genes across species

Significantly different number of short and structural variants compared to Human alternative assemblies

Pan genome efforts in cows and pigs will expand our genomic understanding beyond single breed/animals

There is more variation to capture

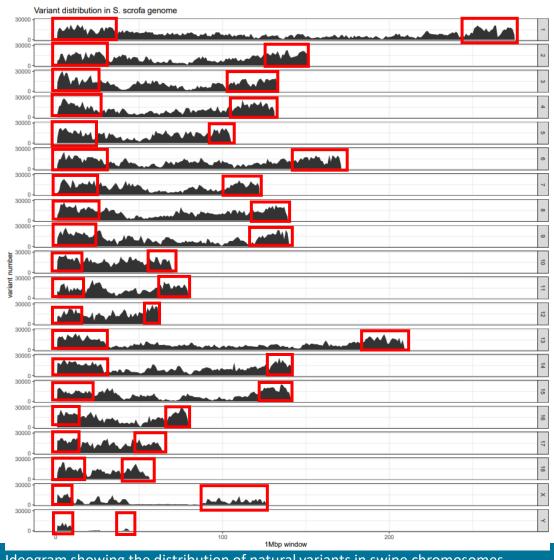
Only one reference genome assembly -Sscrofa11.1 plus 12 additional breeds

Ensembl variant database: total SNPs: 71,053,233

European Variant Archive: total SNPs 72,607,645

Genus Whole Genome Sequence data (7000 samples):

Total SNPs: 101,012,026


SNPs not present in public databases:

37,021,234

Natural variation across individuals/breeds is not evenly distributed in the pigs' genome

- 2/3 of the variants are in highly repetitive sequence domains in telomeric regions
- A small proportion of variants are in coding genes

NATURAL VARIATION ACROSS INDIVIDUALS/BREEDS IS NOT EVENLY DISTRIBUTED IN THE PIGS' GENOME

- Two-thirds of the variants are in highly repetitive sequence domains in telomeric regions
- A small proportion of variants are in coding genes
- Functional annotation provides information about the impact on coding genes

SNP effects based on gene functional annotation in coding regions:

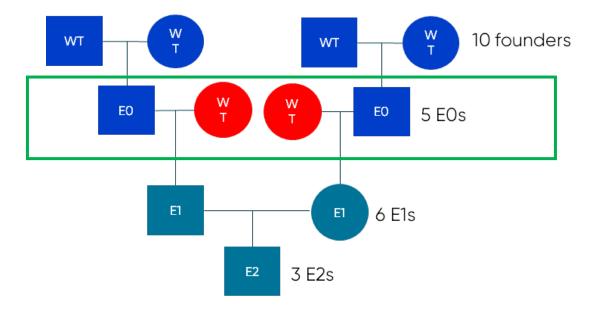
stop gain/lost: 8,092

synonymous: 287,606

missense: 227,894

SNPs not present in public databases in coding regions

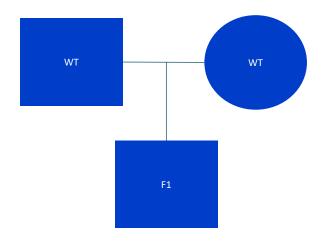
stop gain/lost: 14,394


synonymous: 284,502

missense: 217,793

DE NOVO NATURAL VARIANTS VS OFF-TARGET EVENTS

De novo vs Off-target variants analysis on E0 pigs using WGS (short and structural variants from reference swine population)


- Total of 1225 de novo variants across 5 E0s were found using existing reference genome SNP variation
- 192-466 potential "de novo" mutations per individual
- Not possible to differentiate between true de novo (not present in the parental samples) vs simply not represented in the reference population
- Using guides' sequences can identify small guide-specific changes outside of the target edit
- What do the rest of the "new" variants represent?
 - Large number of false positives these variants are not truly *de novo* they are just **not represented in the population database**
 - We can confirm that in fact, they are inherited from one of the parents

EVALUATION OF LEVEL OF NATURALLY OCCURRING *DE NOVO* VARIANTS IN PIGS THROUGH **NORMAL REPRODUCTION CYCLES**

De novo variant - a genetic change (SNP or INDEL) that is present in the progeny and absent in the parental samples

Whole Genome Sequencing of 13 litters in trios

De novo variants defined as:

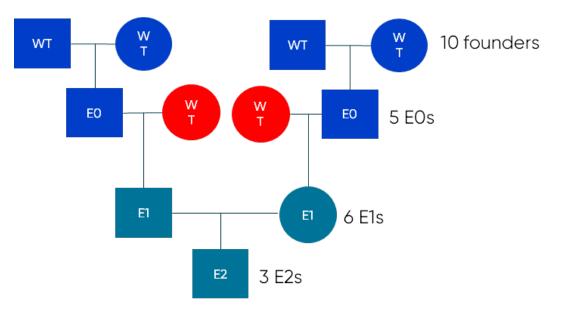
- Not present in either parent
- Heterozygous (0/1) in F1 offspring
- Criteria used: allele frequency >0.2 with depth of alternative allele coverage ≥20X coverage

F1 animals

Total *de novo* variants - 1367 88-134 variants per individual vs 192-466

Total Indels - 394 24-43 indels per individual

Total *de novo* variants in coding regions - 37


Missense - 2

Only the family trio analysis allowed us to detect true de novo events in each generation

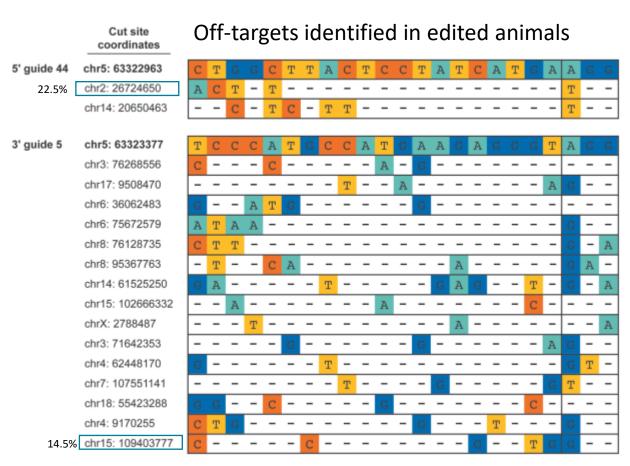
Only a small number of de novo variation is in coding regions

DE NOVO VARIANTS IN GENE-EDITED PIGS DEMONSTRATE THAT **OFF-TARGETS**ARE NOT DRIVEN BY RANDOM EVENTS IN THE GENOME

Whole Genome Sequencing in trios

- Trio analysis was done for 24 sequenced gene-edited animals
- 2 TB of processed data was produced
- Sequencing depth: 30X to 60X
- Cost: average \$1,500 per sample depending on depth

Identified true *de novo* variants in gene-edited pigs:


- None *de novo* variants are in target regions or genes
- No significant difference in frequency of de novo variant in edited vs non-edited pigs
- Off-target events in gene-edited pigs are not random (guide and method driven)

IN THE CONTEXT OF GENE EDITING: TARGETED APPROACH ALLOWS FOR PRECISE OFF-TARGET IDENTIFICATION. WGS ANALYSIS CONFIRMS THAT OFF-TARGETS ARE NOT DRIVEN BY RANDOM EVENTS IN GENOME

Analysis of off-targets for PRRSV-resistant pigs

- Site—seq identifies **potential** off-targets based on guide sequences:
 - 182 potential off-targets (in silico and in vitro analysis)
- Sequence capture confirms actual off-targets in edited animals (E0)
 - Only 17 off-targets found in edited animals
- PCR screening to reconfirm off-targets in edited animals
 - Primers for 5' and 3' guides
 - All E0 tested with negative results

Top of each panel shows Cas9 spacer sequence and PAM for 5' and 3' guides. Conserved nucleotides are depicted with a dash

SUMMARY

- There is more diversity in animal genomes then captured today. To capture and represent true individual diversity, Alternative Genome Assemblies, Pan-genomes, and precise annotation is needed
- Variation in the genome is not random (hot spots)
- Off-target events in gene-edited pigs are not random (guides and method driven)
- Off-target edits are reliably detected via targeted analysis of predicted off-target sites. There are in silico, in vitro, and in vivo methods to test off-target events that can be combined to minimize false positive and false negative results
- To use WGS for off-target identification, the generational trios should be used at high sequencing depth (60X-100X). The same off-targets were identified by targeted analysis. WGS adds significant cost, time, and computing resources and, therefore, not practical
- Naturally occurring de novo events are present in all individuals in each generation (63-134). The family trio analysis was the most accurate way to capture those events in pig populations
- CRISPR/Cas-edited pigs showed a lower rate of off-target mutation than natural variation in conventionally bred pigs