

Perspectives on vaccination as an approach for control of highly pathogenic avian influenza viruses: challenges and opportunities

Shayan Sharif
Ontario Veterinary College
University of Guelph
Canada

2022-2024 H5N1 outbreaks in poultry and wild birds in the US More Spotlights

Wild Birds **Poultry** Humans **Poultry Affected** Reported Human Cases in the U.S. Wild Birds Detected 8,753 81,801,527 as of 2/08/2024 I Full Report > as of 2/08/2024 | Full Report > as of 04/28/2022 | Full Report > States with Poultry Outbreaks Jurisdictions with Bird Flu in Wild Birds States with Reported Case(s) **50** 47

This webpage will be updated weekly on Wednesdays to reflect any new data. Data on wild birds have been collected since January 20, 2022. Data on poultry have been collected since February 8, 2022.

Protective Actions for People

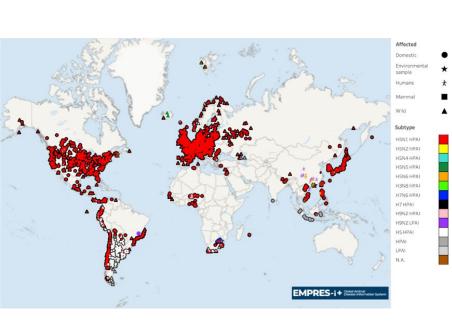
Protective actions around wild birds

If you have contact with infected birds and become

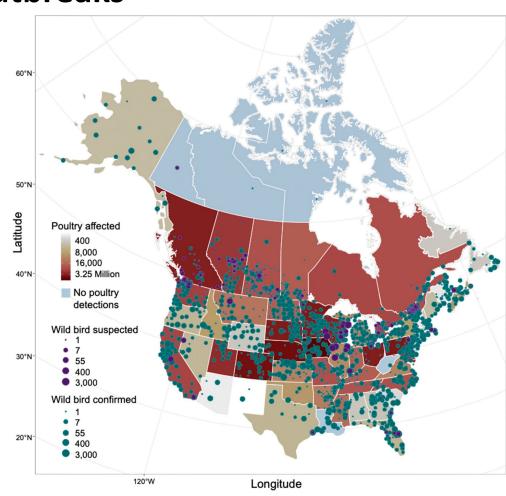
2022-2024 H5N1 outbreaks in poultry in Canada

Flocks in Canada where HPAI has been detected

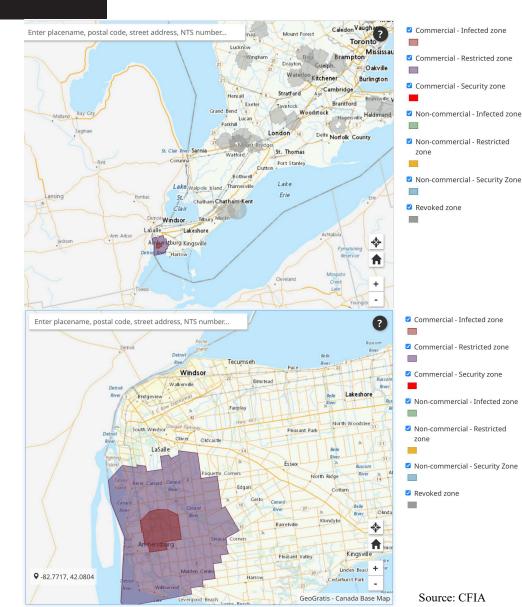
▼ Estimated number of birds in infected flocks


This table lists the estimated number of birds in flocks impacted by highly pathogenic avian influenza by province.

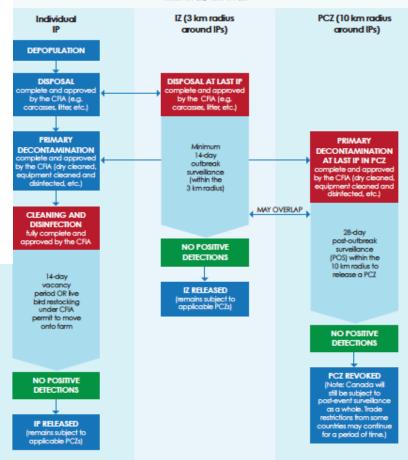
Province	Number of infected premises (current IPs)	Number of previously infected premises (released IPs)	Estimated number of birds impacted (as of 2024-02-09)
Alberta	4	77	1,858,000
British Columbia	18	140	6,004,000
Manitoba	0	23	400,000
New Brunswick	0	2	Under 100
Newfoundland and Labrador	0	2	400
Nova Scotia	2	6	12,000
Ontario	1	48	899,000
Quebec	1	51	1,111,000
Saskatchewan	2	42	742,000
Total	28	391	11,026,500


Source: CFIA

Highly pathogenic avian influenza H5N1 outbreaks


AIV with zoonotic potential, 2022 to 2023

Poultry affected by HPAIV H5N1 from December 2021 to March 2023 (Canadian Food Inspection Agency Government of Canada, 2023b; USDA APHIS, 2023b)


Control of HPAI in Canada

The path to revoking a primary control zone

The process leading to revoking a primary control zone (PCZ) begins when the last infected premises (IP) in a PCZ has completed primary decontamination. Certain steps are tied to the size of the premises and the type of action required. As a result, the number of days required to complete the revocation process may vary.

The following outlines key trigger points for specific timelines related to an IP, an infected zone (IZ) within a PCZ, and a PCZ.

Avian influenza is a federally reportable disease – anyone suspecting avian influenza is required to report to the CFIA

inspection.canada.ca/flock-protection

Source: CWHC

HPAI live and dead bird testing and surveillance in Canada

WILDLIFE HEALTH COOPERATIVE

REPORT & SUBMIT
SURVEILLANCE & RE-

REPORTS

PUBLICATIONS

ABOUT US

REGIONS

WHIP

CONTACT US

LEGAL & DISCLAIMER

LIVE BIRD SURVEY - 2023

Region	Tested	Matrix Positive*	H5 Positive	H7 Positive	HPAI **
British Columbia	53	5	0	0	0
Alberta	0	0	0	0	0
Saskatchewan	45	0	0	0	0
Manitoba	0	0	0	0	0
Ontario	737	0	2	0	0
Quebec	944	1	1	0	1
New Brunswick	406	63	0	0	0
Nova Scotia	249	28	3	0	0
Prince Edward Island	378	5	0	0	0
Newfoundland and Labrador	550	92	2	0	1
Yukon	0	0	0	0	0
Northwest Territories	406	0	0	0	0
Nunavut	220	0	0	0	0
TOTAL	3988	194	8	0	1

 $[\]hbox{** The CFIA has confirmed the presence of High Pathogenic Avian Influenza (HPAI), subtype $H5N1.}$

Numbers correct as of October 3, 2023

DEAD BIRD SURVEY - 2023

DEAD BIRD SURVEY - 2023							
Region	- Öcto 2	mber 26 ober 23, 023 Matrix		Matrix	ır To Do	LJ 7	HPAI
	Tested	Positive*	Tested	Positive *	Positive	Positive	
British Columbia	0	0	0	0	0	0	15
Alberta	51	14	418	37	36	0	8
Saskatchewan	28	4	338	18	14	0	0
Manitoba	11	0	189	1	1	0	3
Ontario	51	2	765	147	148	0	103
Québec	19	0	362	36	35	0	15
New Brunswick	2	0	155	10	7	0	1
Nova Scotia	0	0	233	47	47	0	40
Prince Edward Island	9	0	119	57	56	0	45
Newfoundland and Labrador	0	0	63	20	19	0	10
Yukon	1	0	20	1	1	0	0
Northwest Territories	0	0	5	0	0	0	0
Nunavut	0	0	8	1	1	0	1
TOTAL	172	20	2675	375	365	0	241

^{**} The CFIA has confirmed the presence of High Pathogenic Avian Influenza (HPAI), subtype H5N1.

Digital surveillance of HPAI

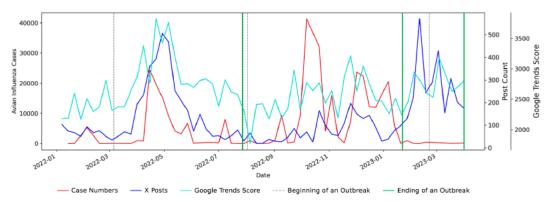


Fig. 7: Weekly Trend of Post Count, Google Trends Score, and Avian Influenza Cases in Canada. Depicted outbreak waves were reported by the Canadian Food Inspection Agency (CFIA). The gray dashed line represents 3 weeks prior to the outbreak start date, and the green line shows the end of the wave.

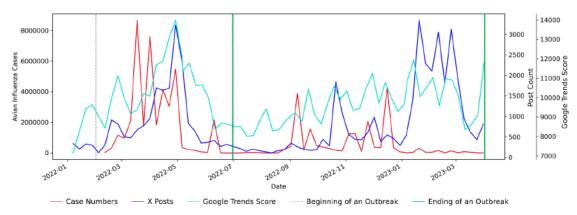


Fig. 8: Weekly Trend of Post Count, Google Trends Score, and Avian Influenza Cases in the USA. Depicted outbreak waves were reported by the USDA. The gray dashed line represents 3 weeks prior to the outbreak start date, and the green line shows the end of the wave.

Will H5N1 jump to mammals and eventually to humans?

Popular Latest Newsle

The Atlantic

My Accou

Eagles Are Falling, Bears Are Going Blind

Bird flu is already a tragedy.

By Katherine J. Wu

Sea lion die-off in Peru

H5N1 and transmission to mammals

Explore content >

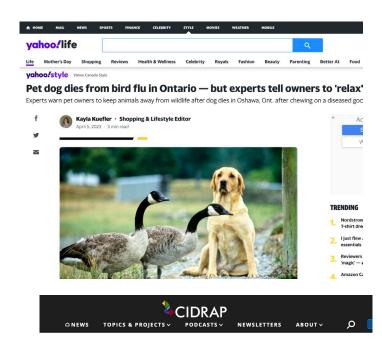
About the journal ∨

Publish with us V Subscribe

nature > research highlights > article

RESEARCH HIGHLIGHT | 17 March 2023

Bird-flu virus makes itself at home in Canada's foxes and skunks


The virulent H5N1 strain now sweeping across the world is adapting to its mammalian hosts in northern North America.

Wyoming reports high-path avian flu in cat

News brief | April 7, 2023 <u>Lisa Schnirring</u> Topics: <u>Avian Influenza (Bird Flu)</u>

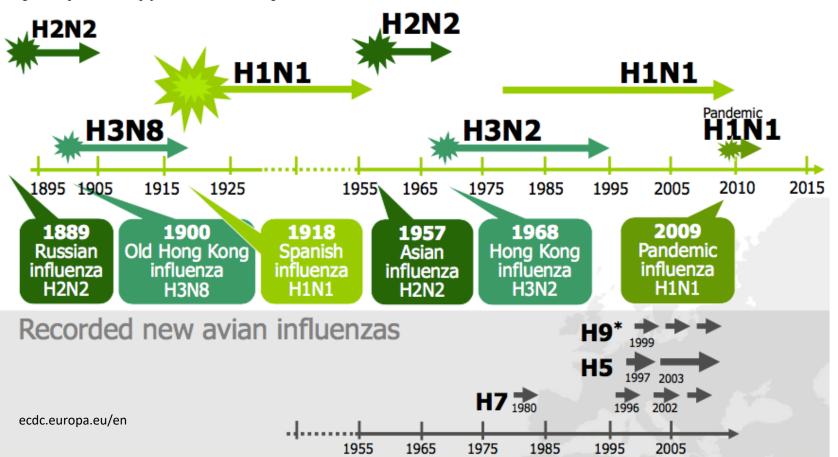
1 SHAR

The Wyoming State Veterinary Lab (WSVL) said it has diagnosed highly pathogenic avian influenza in a barn cat, the state's first detection of the virus in a domestic cat.

In a brief <u>statement</u> on its website, the WSVL said the cat is located near Thermopolis, in the central part of the state. It said that the cat probably contracted the virus from eating meat from wild waterfowl. In recent months, the lab has also detected the virus in other carnivores, including mountain lions and a red fox.

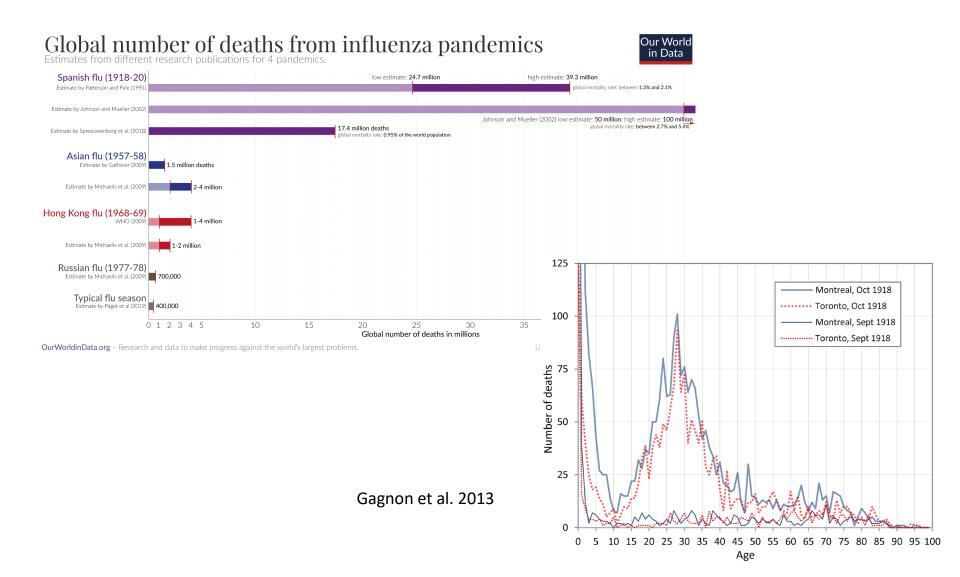
The WSVL said clinical symptoms of avian flu infection in mammals can include neurologic signs that resemble rabies, and it urged people to use gloves and masks when handling sick and dead mammals.

The detection of avian flu in a domestic cat follows a similar report earlier this week of a domestic dog that tested positive for H5N1 in Canada. In earlier H5N1 outbreaks in Asia



Pandemics of influenza

NID 國立療染疫研究所



Recorded human pandemic influenza (early sub-types inferred)

Influenza pandemic mortality

About the institutions ^

Topics ~

Meetings ~

News and media ~

Research and publications >

Home > Press > Press releases

Ocuncil of the EU Press release 24 May 2022 10:50

Council approves conclusions on a strategic approach for the development of vaccination as a complementary tool for the prevention and control of highly pathogenic avian influenza (HPAI)

INFECTIOUS DISEASE

Wrestling with bird flu, Europe considers once-taboo vaccines

To lessen the toll of culling, some countries launch vaccine trials despite trade implications and public health risks

What types of vaccines and vaccine platforms do we need?

- Reduce virus transmission
- Generate long-lasting immunity
- Thermostable
- Rapid development and approval
- Rapid and efficient deployment
- Differentiate between vaccinated and infected

Desired property	Current situation
Inexpensive	Current cost for inactivated Al vaccine: US\$0.05–0.10 per dose plus cost of administration (US\$0.05–0.07 per dose for individual handling and injection) [342]
Use in multiple avian species	Most used in meat, layer, and breeder chickens, but large quantity also used in ducks; minor amounts in turkeys, geese, quail, etc. [336]
Single dose protection	Most situations require a minimum of two doses; prime-boost scenario is optimal, with additional boost in long-lived birds at 6- to 12-month intervals [338]
Mass application	95.5% is inactivated vaccine administered by handling and injecting individual birds, with 4.5% as vectored vaccine given by mass spray vaccination (rNDV vector) [299, 332]
Identify infected	Serological differentiation tests are
birds in	available, but have only minor use. Most
vaccinated	vaccine is applied without using a DIVA
population	strategy [338]
Overcome	Maternal antibody to AIV hemagglutinin
maternal	or virus vector inhibits primary immune
antibody block	response. Initial vaccination must be timed for declining maternal antibody titers to allow optimal primary immune response [332], and also a decline in active immunity is needed before giving booster vaccinations [213]
Given at 1 day of	Inactivated vaccine provides poor
age in hatchery or	protection if given at 1 day of age.
in ovo	Vectored vaccines can be given at 1 day of age, but generally require a field boost with inactivated vaccine 10 days or more later
Antigenically	The majority of inactivated whole Al
close to field virus	vaccine uses reverse-genetic-generated vaccine seed strains to antigenically match field viruses [324]

Swayne and Kapczynski 2017

To vaccinate or not to vaccinate?

- Emergency or preventive vaccines?
- Vaccinating target populations, species or regions
- Aim: reducing disease or infection or both?
- Leaky and mismatched vaccines
- Trade issues
- Can we vaccinate wild birds?

AVIAN PATHOLOGY 2022, VOL. 51, NO. 3, 211–235 https://doi.org/10.1080/03079457.2022.2054309

REVIEW ARTICLE

Strategies for enhancing immunity against avian influenza virus in chickens: a review

Nadiyah Algazlan^a*, Jake Astill^b*, Sugandha Raj^a* and Shayan Sharif^a

^aDepartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada; ^bArtemis Technologies Inc., Guelph, Canada

ABSTRACT

Poultry infection with avian influenza viruses (AIV) is a continuous source of concern for poultry production and human health. Uncontrolled infection and transmission of AIV in poultry increase the potential for viral mutation and reassortment, possibly resulting in the emergence of zoonotic viruses. To this end, implementing strategies to disrupt the transmission of AIV in poultry, including a wide array of traditional and novel methods, is much needed. Vaccination of poultry is a targeted approach to reduce clinical signs and shedding in infected birds. Strategies aimed at enhancing the effectiveness of AIV vaccines are multi-pronged and include methods directed towards eliciting immune responses in poultry. Strategies include producing vaccines of greater immunogenicity via vaccine type and adjuvant application, and increasing bird responsiveness to vaccines by modification of the gastrointestinal tract (GIT) microbiome and dietary interventions. This review provides an in-depth discussion of recent findings surrounding novel AIV vaccines for poultry, including reverse genetics vaccines, vectors, protein vaccines and virus-like particles, highlighting their experimental efficacy among other factors such as safety and potential for use in the field. In addition to the type of vaccine employed, vaccine adjuvants also provide an effective way to enhance AIV vaccine efficacy; therefore, research on different types of vaccine adjuvants and vaccine adjuvant delivery strategies is discussed. Finally, the poultry gastrointestinal microbiome is emerging as an important factor in the effectiveness of prophylactic treatments. In this regard, current findings on the effects of the chicken GIT microbiome on AIV vaccine efficacy are summarized here.

ARTICLE HISTORY

Received 3 November 2021 Accepted 11 March 2022

KEYWORDS

Vaccine; influenza; H9N2; adjuvants; microbiome; prebiotics; probiotics; immune response

French experience with vaccines

scenarios for poultry

Health crises caused by avian influenza have been recurring and growing in scale, which means that preventive measures on French poultry farms need to be reinforced. The vaccination of poultry is a possible option that is being considered to supplement the biosecurity measures already in place on these farms. To help the public authorities establish a vaccinatio

autumn 2023, ANSES They aim to protect p determining the type priority, depending o

France detects bird flu on vaccinated ducks farm

What are we doing in Canada?

Highly Pathogenic Avian Influenza Vaccination Task Force

The Highly Pathogenic Avian Influenza (HPAI) Vaccination Task Force is dedicated to studying the challenges and opportunities for the development and implementation of an HPAI vaccination program.

This task force serves as a forum for discussion and consensus building that brings together insights from veterinarians, experts from academia, industry representatives and government representatives on issues relating to the potential use of vaccination against HPAI in Canada.

Background

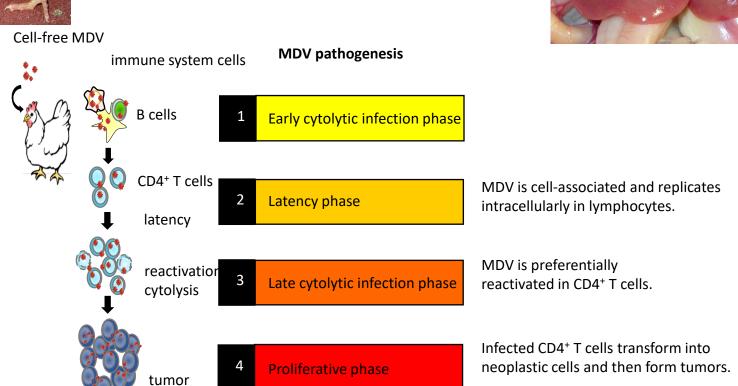
The recent outbreak of H5N1 HPAI has resulted in the deaths of hundreds of millions of domestic and wild birds throughout the globe. HPAI has occurred in areas of the world where it had never occurred previously, such as countries in Central and South America. In Canada, millions of birds have been impacted since December 2021.

Canada has historically maintained a stamping out policy for HPAI with the goal of achieving disease eradication in poultry and a return to disease-free status. However, the scale and duration of this outbreak, along with international movements towards exploring the use of vaccination as an additional tool to fight against HPAI, has prompted Canada to take action.

Topics of discussion

The task force will explore whether Canada would benefit from a vaccination program. Topics of discussion will include and are not limited to:

- · availability of effective vaccines
 - what vaccines are available, for which species
- implementation considerations
 - logistics
 - $\circ\;$ roles and responsibilities of government, industry and veterinarians in a roll-out
- approaches for surveillance
 - $\circ~$ requirements for differentiating infected from vaccinated animals (DIVA) methodology
 - o how to meet surveillance requirements set by key trading partners
- trade implications
 - identifying priority export markets, reviewing their requirements for imports, including their own intentions in relation to vaccinating domestic flocks
- identifying cost and benefits
 - cost of vaccines per dose
 - administration of vaccine
 - surveillance
 - o assessment of economic costs and benefits to industry and government
 - o cost and responsibility sharing


Source: CFIA

Genetic resistance to Marek's disease: A success story!

Challenges ahead!

- Could vaccination/genetic resistance lead to virus evolution?
- Could HPAI viruses evade vaccines and genetic resistance?
- Could resistant/vaccinated animals spread HPAI even more efficiently?
- What tests will we use for surveillance?
- What are the international trade implications?
- Can vaccination and genetic resistance be combined as a strategy?

Published: 30 October 2018 doi: 10.3389/Nets.2018.0026

Detecting and Predicting Emerging
Disease in Poultry With the
Implementation of New Technologies
and Big Data: A Focus on Avian
Influenza Virus

Jake Astill¹, Rozita A. Dara², Evan D. G. Fraser² and Shayan Sharif^{1*}

scientific reports

Check for update

OPEN A decision support framework for prediction of avian influenza

Samira Yousefinaghani¹, Rozita A. Dara¹™, Zvonimir Poljak² & Shayan Sharif¹

Thank you