

Values-Centered Adoption of AI for the USGCRP

Katie Shilton

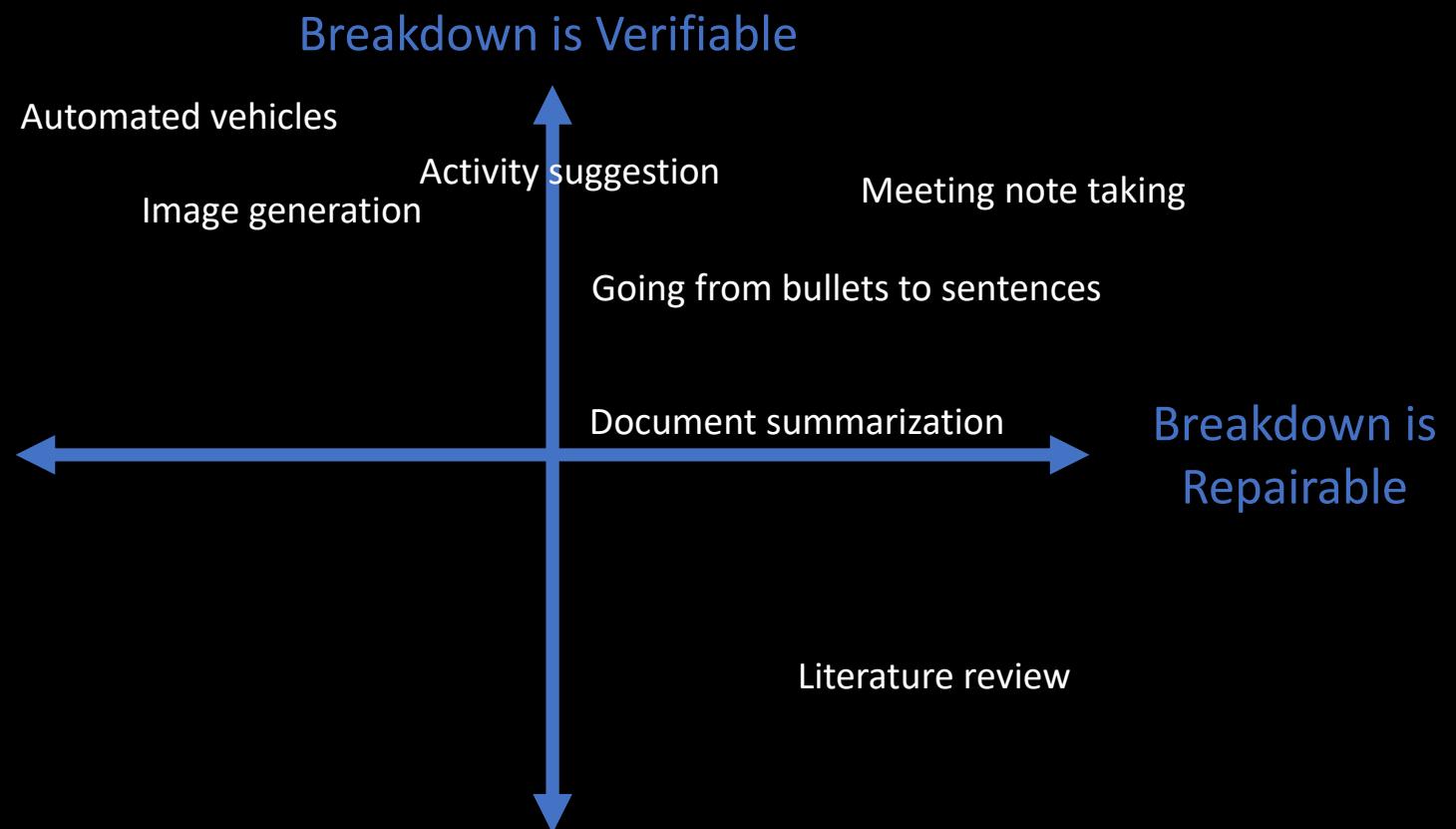
Mapping Human/Organizational Values to AI

Collaboration with colleagues in computer science, philosophy, and information

One outcome: heuristics and exercises for making AI adoption decisions that center human values.

- 1) Mapping principles to AI capabilities and challenges
- 2) Mapping AI breakdowns and avenues for repair

VALUES-CENTERED
ARTIFICIAL INTELLIGENCE


Mapping USGCRP Principles

Principle	GenAI supports by...	GenAI challenges by....
Applicability and Utility: source is important, relevant, and useful for its intended audience		
Transparency and Traceability: source material, methods, and evaluation are documented and clear.		
Objectivity: purpose, methods, presentation, substance, and interpretation of conclusions are clear, accurate, reliable, and unbiased.		
Integrity and Security: source material will remain protected and intact over time; both info and owners of info are respected.		
Reproducibility: Procedures surrounding source materials are documented such that they can be reproduced, with checks for robustness on non-reproducible data.		

Mapping USGCRP Principles

Principle	GenAI supports by...	GenAI challenges by....
Applicability and Utility: source is important, relevant, and useful for its intended audience	<ul style="list-style-type: none">*Potentially* expanding access to peer review, grey lit, expert & local knowledge.Translation of indigenous languages.	<ul style="list-style-type: none">Obscuring sources
Transparency and Traceability: source material, methods, and evaluation are documented and clear.	<ul style="list-style-type: none">Potential improvements for documentation of processes	<ul style="list-style-type: none">Lacking provenance and traceability
Objectivity: purpose, methods, presentation, substance, and interpretation of conclusions are clear, accurate, reliable, and unbiased.		<ul style="list-style-type: none">May introduce language or representation biases.
Integrity and Security: source material will remain protected and intact over time; both info and owners of info are respected.		<ul style="list-style-type: none">Remixing, disrespecting ownership
Reproducibility: Procedures surrounding source materials are documented such that they can be reproduced, with checks for robustness on non-reproducible data.		<ul style="list-style-type: none">Producing variable results

Mapping AI Breakdown and Repair

Values-Centered Adoption Tools

- Algorithmic Impact Assessment tools: OECD: <https://oecd.ai/en/catalogue/tools/algorithmic-impact-assessment-tool>, Ada Lovelace (healthcare): <https://www.adalovelaceinstitute.org/resource/aia-user-guide/> EqualAI: <https://www.equalai.org/aia/>
- Vakkuri, V., Kemell, K.-K., Jantunen, M., Halme, E., & Abrahamsson, P. (2021). ECCOLA — A method for implementing ethically aligned AI systems. *Journal of Systems and Software*, 182, 111067. <https://doi.org/10.1016/j.jss.2021.111067>

Questions for discussion

- What AI tools are we considering, for what purposes?
 - Which are classifiers? Which are generative AI?
- What are their points of breakdown, and how – and who- will repair?
- How do those tools map to agency and process values?
 - And which stakeholders should be consulted?

Thank you!

kshilton@umd.edu

TRAILS

<https://www.trails.umd.edu/>

Ethics & Values in Design (EViD) Lab

<http://evidlab.umd.edu/>

This material is based on work supported by National Science Foundation under awards 1704369 and 2229885.