

Airborne Platform Requirements for Advancing Dynamics and Physics of Weather Forecasts

Robert Houze

University of Washington

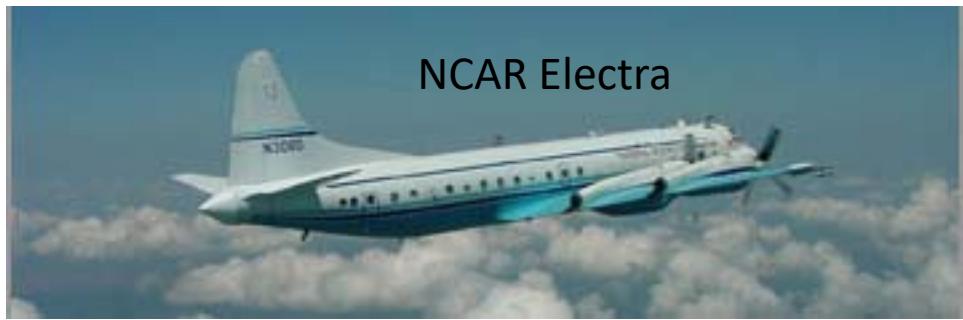
NAS Future of NASA Aircraft Meeting, July 29-31, 2020

My Experience

Field projects

ocean, land, tropics, midlatitudes, mountains

convection, tropical cyclones, fronts, orographic precipitation


A/C used

P3s, Electra, DC-8, Citation, ER-2, Global Hawk, + others

Satellites

TRMM, GPM, CloudSat

The Aircraft I have used

Questions Regarding NASA Airborne Platforms to Advance Earth Science

- What emerging science/research questions can be best addressed **with large platforms** as the airborne component for the integrated studies?
- Which of these science questions might be well-suited to combinations of **smaller platforms** for their airborne component should a large platform not be available? What is the loss to science if the airborne component needed to be done through a combination of one or more smaller-sized aircraft?
- How might newly available suborbital platforms (especially **UASs** and advanced technology balloons) similarly contribute to integrated studies addressing these scientific questions?

Aircraft Required for High-impact Weather Systems

Weather systems producing precipitation and severe weather

Large convective clouds

Mesoscale convective systems (MCSs)

Tropical cyclones

Frontal cloud systems

Outstanding questions affecting precise prediction of weather systems producing precipitation and severe weather:

What factors determine sizes and lifetimes of storms?

How are mesoscale motions induced within storms?

What factors control the microphysical growth and fallout of precipitation particles?

How do aerosols affect the structures and intensities of predicted storms?

Need comprehensive observations of weather systems to test prediction accuracy

Scales of Weather Systems

Weather Phenomenon	Height Scale	Horizontal Scale	Time Scale
Convective cloud	10-15 km	10s of km	Hours Evolving ~ minutes
MCS	10-15 km	100s of km	<i>10s of hours,</i> evolving ~ 1-10 minutes
Eyewall/rainband	10-15 km	100s of km	10s of hours → day evolving ~ 1-10s of minutes
Frontal system	10-15 km	10-1000 km	1-10 hours Evolving, 10s of minutes

Altitude range
1-15+ km

Flight duration
~10 hours

Types of *in situ* measurements required

T, p

Water vapor—**problematic** but critical

u, v

w—very **problematic**, only can get extremes

Drop size

Ice particle types, sizes, and concentrations

Ice crystal habits

Aggregates (snow)

Graupel

Hail

Simultaneous in-cloud sampling

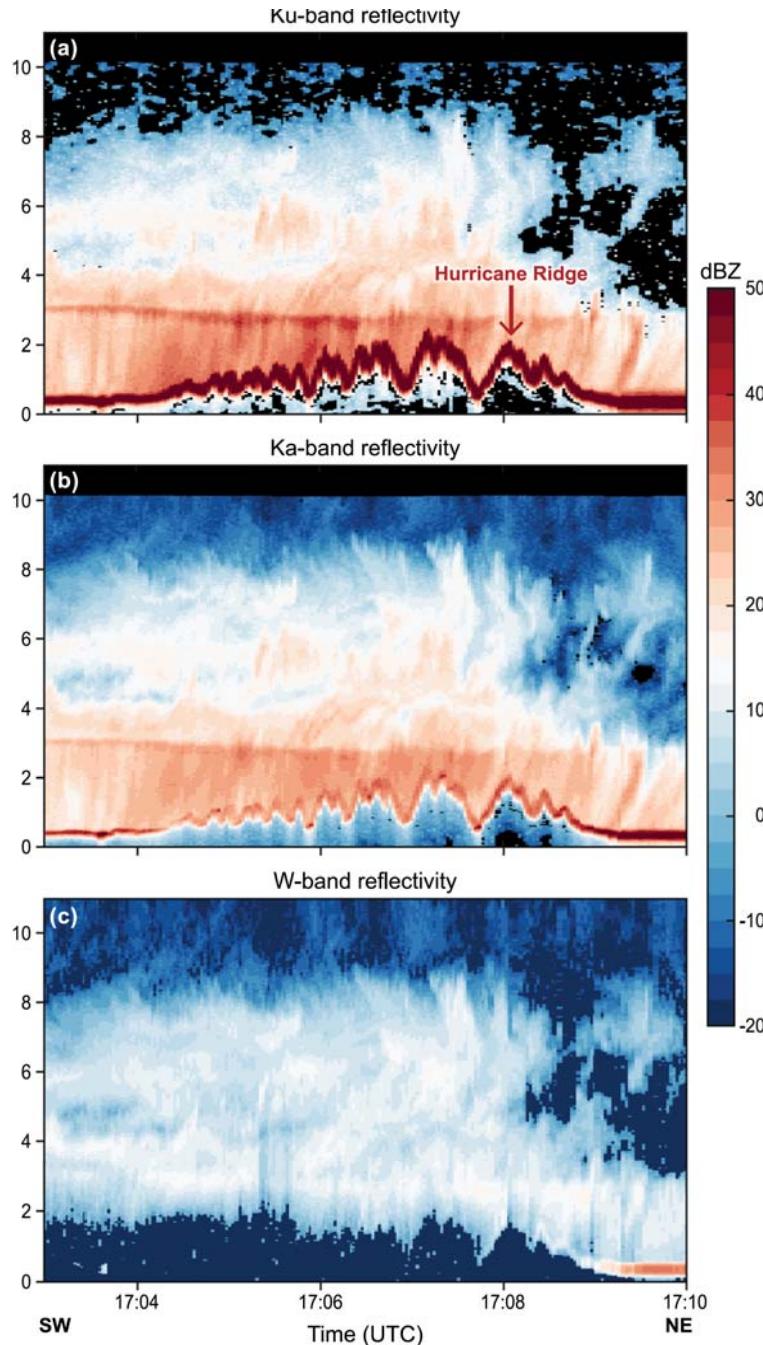
Robust A/C for
icing, hail, lightning,
turbulence

Types of remote sensing measurements required

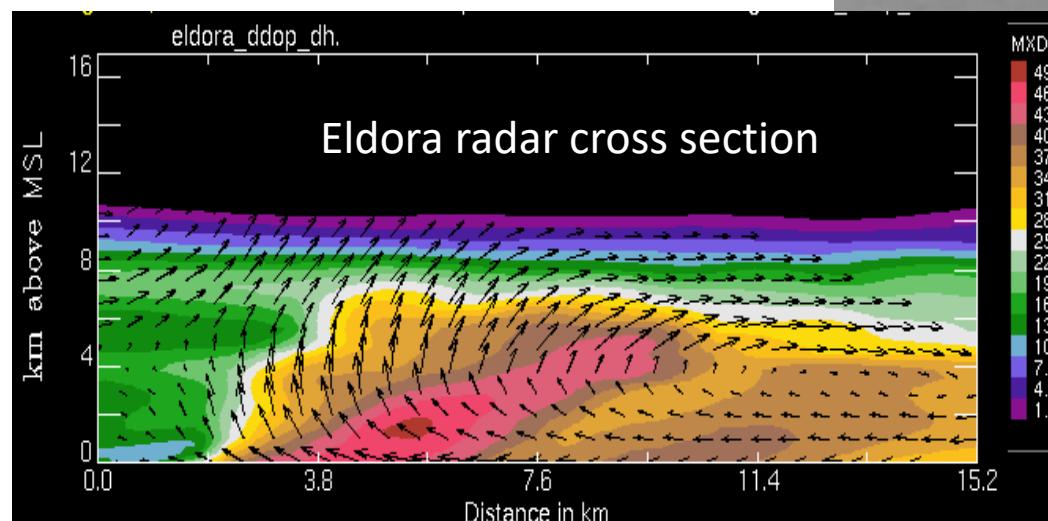
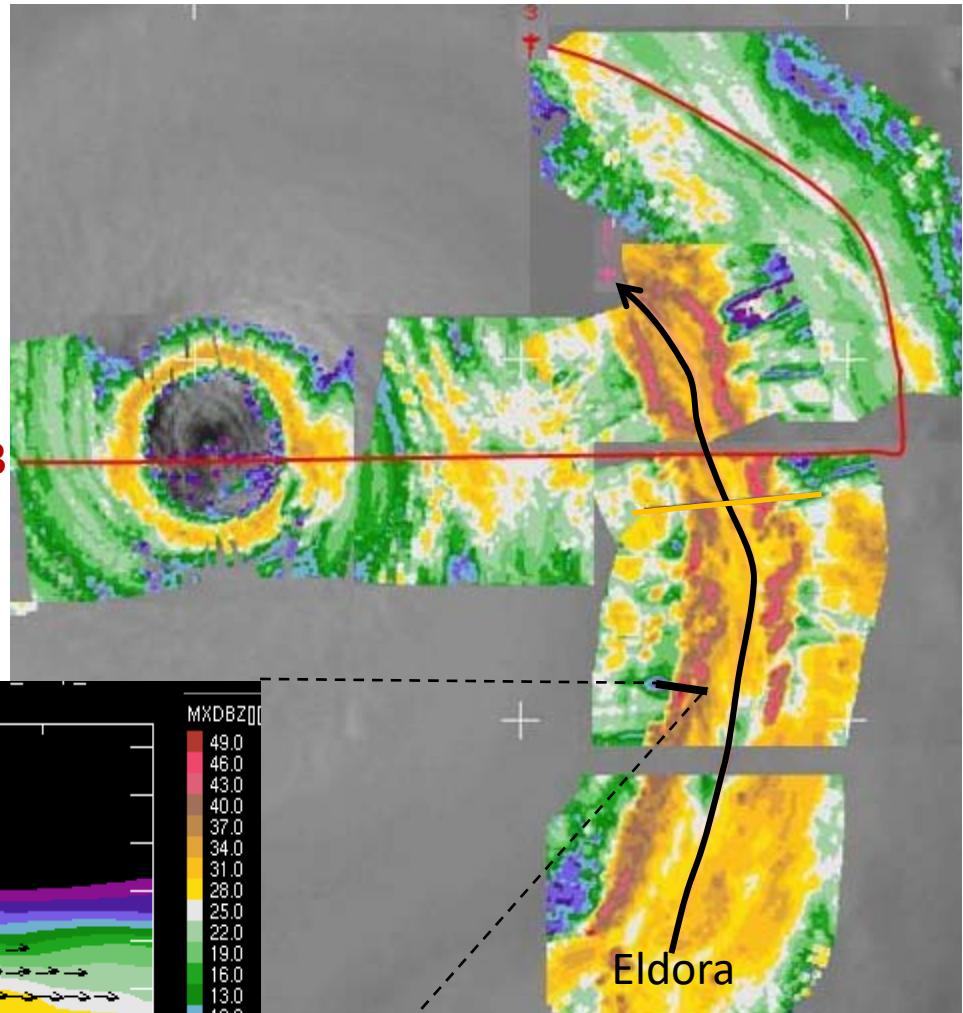
Targeting—

- On board radar
- Ground-based radar
- Satellite imagery

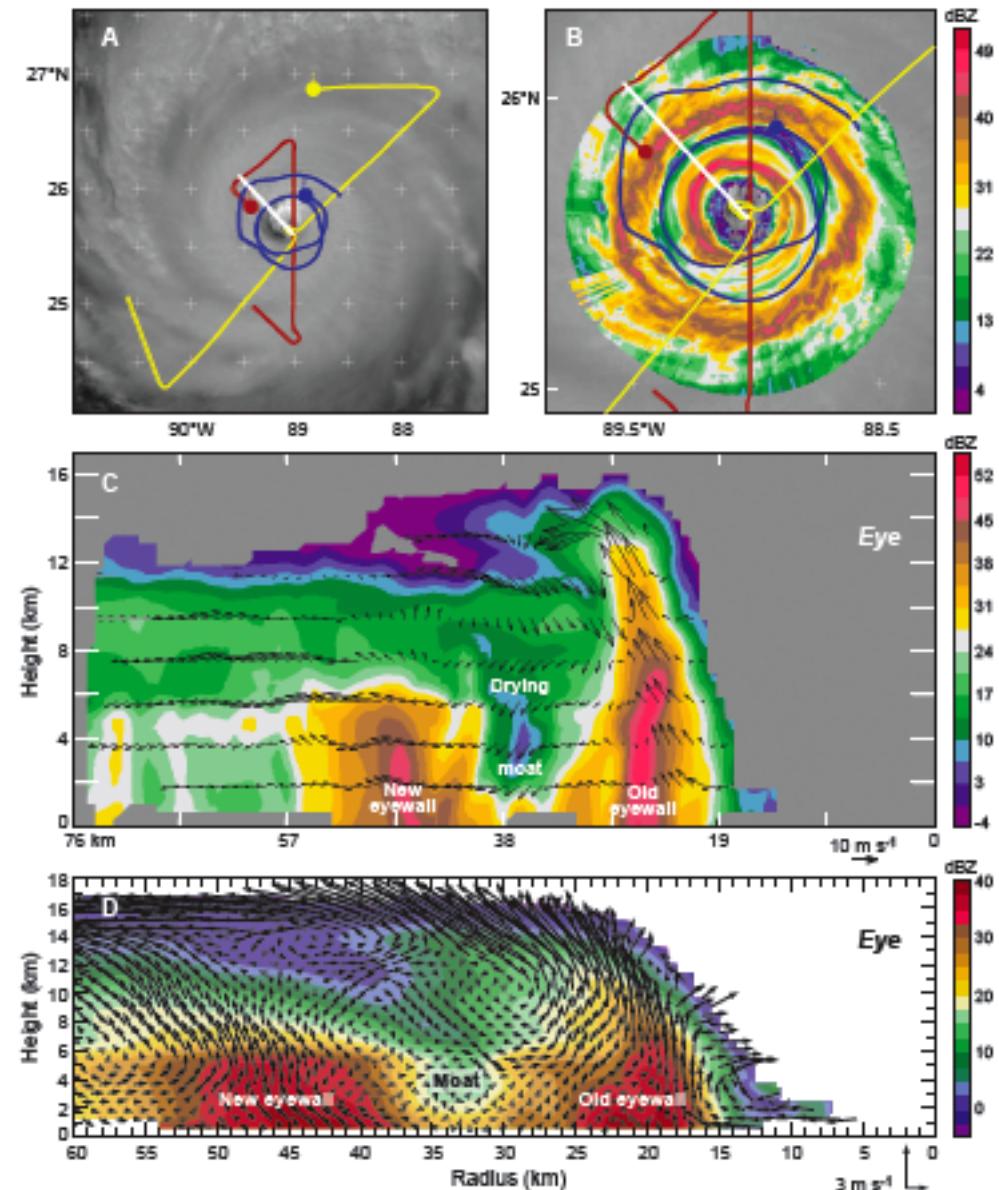
Spatial distributions—


- Precipitation particles (X, Ku, Ka band radars)
- Cloud particles (W band radar)
- Wind components (u, v, w Doppler radar)
- Particle types (dual-polarized radar)

Payload sufficient
for radars



DC-8 flight with APR3 radar over the Olympic Mountains in OLYMPEX in 2015

- Three different radar frequencies used to show how mountains affected the frontal storm
- Provided context for smaller citation aircraft to sample microphysics at different altitudes


Two P3s flying in Hurricane Katrina (2005)

- Scanning radars on the NOAA P3 targeted the principal rainband
- Guided by targeting of the scanning radars, the NCAR Eldora radar on a Navy P3 provided unprecedented documentation of the rainband

Three P3s flying in Hurricane Rita during eyewall replacement

- Scanning radars on the NOAA P3s targeted the eyewall replacement
- Guided by targeting of the scanning radars, the NCAR Eldora radar on a Navy P3 provided unprecedented documentation of the eyewall replacement

Types of environmental measurements required

Dropsondes

Aerosol sampling

Lidar for aerosol spatial distribution and concentration

Lidar for environmental air motions

Boundary layer T, water vapor, turbulence

Payload sufficient
for lidars & aerosol
sampling

Summary for High-Impact Weather Aircraft

Types of research aircraft required for high-impact weather systems

Long duration (~10 hour flights)

Wide range of altitude capability (up to at least 15 km)

Robust airframe (flying in icing and turbulent conditions)

Payload capable of handling radars and lidars

Important supplementary roles for smaller aircraft

Penetration of very intense updrafts and downdrafts

Sampling of hail

Sampling of environmental aerosol

Sampling of sub-cloud layer phenomena (e.g., cold pools)

Aircraft Required for Boundary-layer Weather Events

Boundary-layer phenomena challenges in weather prediction

Large oceanic stratus fields

Arctic stratus

Fog episodes

Aerosol concentration and types

Sub-cloud layer turbulence in areas of convective clouds

Sea-spray and turbulence in tropical cyclones

Air pollution events

Aircraft requirements for boundary layer weather phenomena

Altitude

Only about 1-2 km

Flight duration

Large range required, ~10 hour flights

Payload

Radiation measurement

Turbulence

Radar

Lidar

Cloud microphysical sampling

Aerosol sampling—type, concentrations

Potentially harsh flight conditions

Possible icing in some situations

Turbulence in tropical cyclone boundary layer

Summary for Boundary-layer Weather Aircraft

Types of research aircraft required for boundary-layer weather systems

Long duration (~10 hour flights)

Robust airframe (flying in icing and turbulent conditions)

Payload capable of handling radars and lidars

Low-altitude flying

Important supplementary roles for smaller aircraft or UASs

Radiation

Profiling of T and water vapor

Take Home Message from RAH

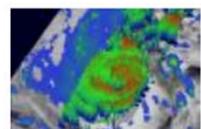
Large A/C are necessary for duration, altitude, targeting, and payload requirements

Smaller A/C are important for supplementary roles

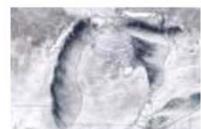
Discussion Topics

- How best to do targeting to optimize measurements
- Should NASA think of large a/c for remote sensing and smaller a/c for:
 - Low level boundary layer sampling
 - Penetration of upper level clouds for microphysics and vertical velocity measurement

WAD Research Questions


Weather and Atmospheric Dynamics addresses the following overarching questions:

How can sub-seasonal to seasonal weather forecast duration and reliability be improved?


How can we improve predictive capability for weather, including extreme events?

What is the role of deep convective towers and precipitation on a tropical storm's life cycle?

To what extent are storm intensification processes predictable?

How can we use NASA, NOAA and other countries' satellite observations innovatively and transition new algorithms, data, and tools to weather forecast operations at our partner agencies?

TABLE 7.1 Summary of Science and Applications Questions and Their Priorities

Science and Applications Questions	Highest Priority Measurement Objectives (MI=Most Important, VI=Very Important)	
W-1	What planetary boundary layer (PBL) processes are integral to the air-surface (land, ocean, and sea ice) exchanges of energy, momentum, and mass, and how do these impact weather forecasts and air quality simulations?	(MI) W-1a. Determine the effects of key boundary layer processes on weather, hydrological, and air quality forecasts at minutes to subseasonal time scales.
W-2	How can environmental predictions of weather and air quality be extended to seamlessly forecast Earth system conditions at lead times of 1 week to 2 months?	(MI) W-2a. Improve the observed and modeled representation of natural, low-frequency modes of weather/climate variability (e.g., MJO, ENSO), including upscale interactions between the large-scale circulation and organization of convection and slowly varying boundary processes to extend the lead time of useful prediction skills by 50% for forecast times of 1 week to 2 months.
W-3	How do spatial variations in surface characteristics (influencing ocean and atmospheric dynamics, thermal inertia, and water) modify transfer between domains (air, ocean, land, cryosphere) and thereby influence weather and air quality?	(VI) W-3a. Determine how spatial variability in surface characteristics modifies regional cycles of energy, water, and momentum (stress) to an accuracy of 10 W/m ² in the enthalpy flux, and 0.1 N/m ² in stress, and observe total precipitation to an average accuracy of 15% over oceans and/or 25% over land and ice surfaces averaged over a 100 × 100 km region and 2- to 3-day time period.
W-4	Why do convective storms, heavy precipitation, and clouds occur exactly when and where they do?	(MI) W-4a. Measure the vertical motion within deep convection to within 1 m/s and heavy precipitation rates to within 1 mm/hour to improve model representation of extreme precipitation and to determine convective transport and redistribution of mass, moisture, momentum, and chemical species.
W-5	What processes determine the spatiotemporal structure of important air pollutants and their concomitant adverse impact on human health, agriculture, and ecosystems?	(MI) W-5a. Improve the understanding of the processes that determine air pollution distributions and aid estimation of global air pollution impacts on human health and ecosystems by reducing uncertainty to <10% of vertically resolved tropospheric fields (including surface concentrations) of specified particulate matter (PM), ozone (O ₃), and nitrogen dioxide (NO ₂).
W-6	What processes determine the long-term variations and trends in air pollution and their subsequent long-term recurring and cumulative impacts on human health, agriculture, and ecosystems?	The objective associated with this question was ranked Important. See subsequent sections for details.
W-7	What processes determine observed tropospheric ozone (O ₃) variations and trends, and what are the concomitant impacts of these changes on atmospheric composition/chemistry and climate?	The objective associated with this question was ranked Important. See subsequent sections for details.
W-8	What processes determine observed atmospheric methane (CH ₄) variations and trends, and what are the subsequent impacts of these changes on atmospheric composition/chemistry and climate?	The objective associated with this question was ranked Important. See subsequent sections for details.
W-9	What processes determine cloud microphysical properties and their connections to aerosols and precipitation?	The objective associated with this question was ranked Important. See subsequent sections for details.
W-10	How do clouds affect the radiative forcing at the surface and contribute to predictability on time scales from minutes to subseasonal?	The objective associated with this question was ranked Important. See subsequent sections for details.

