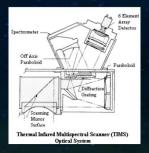

The value of airborne science to my water and energy cycle research area.

Simon J. Hook
Jet Propulsion Laboratory, California
Institute of Technology.

- Research focused on Plant Physiology and Functional Types Key measurements provided by remote sensing: type (traits), structure and function.
- Key Benefits of Airborne Data for ET Science:
 - High spatial resolution. Airborne data can be very high resolution looking at individual trees or variation within a field.
 - High temporal resolution. Airborne data can look over the diurnal cycle by repeat overpasses, very difficult to obtain from satellite data.
 - High spectral resolution: Airborne instruments provide higher spectral resolution allowing mapping of type and gas exchange, including evapotranspiration (ET), how water flows between atmosphere and land.

(Image courtesy NOAA National Weather Service)

© 2020 California Institute of Technology. Government sponsorship acknowledged.



How airborne science has been used in

my research area

- **Technology development**
- Calibration and validation
- Algorithm development
- Local to regional science studies

Airborne Instruments

Airborne Name	TIMS	MASTER	QWEST	HyTES
First Year of Operation	1980	1998	2008	2012
Number of TIR Bands	6	10	56	256

Spaceborne Name	ASTER	Landsat 8	ECOSTRESS	SBG-TIR
First Year of Operation	1999	2013	2018	2026
Number of TIR Bands	5	2	8	8
Pixel Size	90m	100 m	60 m	60 m

Perspectives and Future Directions

Lessons Learned:

- Airborne platforms/instruments provide a valuable proving ground for science and technology
- Airborne platforms need to provide a range of altitudes, speeds and durations to maximize usefulness of data. We have used a wide range of aircraft: Beachcraft B200, Cessna Caravan, DC-8, ER-2, Twin Otter. Some are NASA aircraft and some commercial. Commercial often lower cost and more flexible but new NASA rules make this route increasingly difficult.
- Airborne campaigns need to include for resources for subsequent analysis of data.
- Instruments should fit in a standard camera box for maximum flexibility but NASA planes often lack such standard fittings causing expensive customization.

Future Directions for large payload, prolonged duration aircraft

- Develop airborne observatories. Observatories would include a suite of instruments for addressing a particular problem, e.g. optical (type, function, AV-NG/HyTES) lidar/radar (structure), passive microwave (soil moisture). Observatories would typically be a single large platform with a large range e.g. DC-8, Gulfstream, ER-2. These would be supplemented by smaller aircraft with single instrument. Want to go as low and slow as possible to maximize signal and spatial resolution. A combination of a single platform observatory with supporting smaller aircraft maximizes the science return. Greater thought is needed to provide a compatible space on range of platforms.
- © 2020 California Institute of Technology. Government sponsorship acknowledged.