Airborne Observations of Snow

How has airborne science been used for Snow?

- 1. Satellite mission concept development:
 - Technology development
 - Calibration and validation
 - Algorithm development
- 2. Operational snow surveys:
 - NOAA NOHRSC, Gamma Airborne Surveys, 1980 Present
 - Airborne Snow Observatory (ASO, lidar/hyperspectral), 2013 Present
- 3. Local to regional science studies (mainly lidar, stereophotogrammetry)
 - Snow depth spatial variability in various landscape
 - Repeatability of snow patterns

Value of airborne science for Snow?

- Large, complete spatial coverage (vs ground observations)
- Bridges gap between point ground observations and satellite data → high spatial resolution
- Helps address scaling & model validation questions
- Efficient way to demonstrate constellation approach (multiple observations from different instruments/frequencies)

How has airborne science been used for Snow?

Quantum Spatial (CAS) Lidar & Hyperspectral King Air A90 5200 ft AGL

University of Alabama FMCW Radar Twin Otter 1600-9900 ft AGL

SnowEx 2020

- 5 aircraft with 7 instruments
- Mix of aircraft from NASA, commercial and university/federal partners.
- Range of altitudes for optimal instrument conditions and resolutions

NOAA NOHRSC Gamma Airborne Survey Twin Commander (moving to King Air in 2021) 500 ft AGL

NPS/CIRPAS (CAS) GSFC SWESARR UW Thermal IR Twin Otter 4900 ft AGL

SnowEx 2017

5 a/c (incl P-3), 9 sensors
CLPX 2002-2003

• 4 a/c (incl P-3, DC-8), 5 sensors

Future of Airborne Snow Observations

Lessons Learned

- Limitations on availability, flexibility, instrument accommodation on NASA aircraft
 - Multiple last-minute schedule changes due to other commitments/maintenance impacted science
 - Limited flexibility and availability of smaller NASA aircraft (Twin Otter, Pilatus PC-12)
 - NASA lidar capabilities do not match snow needs. Airborne lidar will be critical for future snow (and Earth Science) campaigns.
- Onerous requirements for non-NASA aircraft (e.g. Medical clearance, Part 135, NAVAIR)
 - New requirements should be relayed to instrument operators 6 months before they are implemented
 - Grace period for signed contracts

Future airborne science needs

- Multiple instruments for coincident observations (through multiple aircraft or large aircraft)
 - Optical, microwave, lidar to efficiently demonstrate constellation approach
 - Multiple frequencies (e.g. L-band, S-band, X/Ku-band) to test multi-frequency retrieval scheme
- Time series approach: critical to assess how snow changes over time → availability, cost
- Autonomous observations: easier use of small UAVs to provide flexibility

Need for large payload, prolonged duration aircraft

- Flying larger/multiple instruments (P-3 more useful than DC-8 for snow)
- Long-endurance aircraft to cover large areas efficiently and/or base further away
- Test/demonstrate scaling up for space
- Continuing need for smaller aircraft option for collecting multiple observations