

Potential Contributions of Artificial Intelligence and Machine Learning-Assisted Techniques for Extreme Precipitation Modeling

Information-Gathering Session

DATE: OCTOBER 6, 11AM-1 PM EDT

Guiding Questions

- How well can existing or foreseeable AI/ML techniques emulate climate models to create very large ensembles of simulations at high resolution (e.g., 25 km or higher)?
- What AI/ML approaches can best be used to simulate or infer high-resolution extreme precipitation in space and time given a suitable large-scale environment?
- What major advances (speed, accuracy, etc.) do you expect to be produced by integration of ML/AI techniques within physics-based climate models?
- What are the prospects and limitations for AI/ML based modeling of the properties of very extreme precipitation from different types of storms in the present and in a changing climate?

11:00–11:10AM	Welcome, Housekeeping, Introduction
11:10–12:00	Session 1
11:10–11:30	Mike Pritchard, University of California, Irvine (UCI); NVIDIA
11:30–11:50	Bill Collins, Lawrence Berkely National Laboratory (LBNL)
11:50-12:00	Questions for Session 1
12:00–1:00	Session 2
12:00–12:20	Chris Bretherton, University of Washington; AllenAl
12:20-12:40	Pierre Gentine, Columbia University
12:40-12:50	Questions for Session 2
12:50-1:00pm Final q	uestions and closing remarks