
Agricultural emissions and possible intervention points

Kristen Johnson Washington State University johnsoka@wsu.edu

METHANE EMISSIONS BY SOURCE AND YEAR (kt)

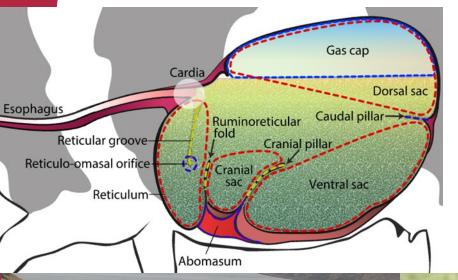
US EPA, Inventory of U.S. GHG Emissions and Sinks: 1990-2021

Field Residue Field Burning

A field burn north of Grangeville, ID. David Rauzi. 2019

Some regulation: Local air quality boards

Challenge:
Diffuse sources


Rice cultivation

Current work into management practices to reduce CH4 emissions

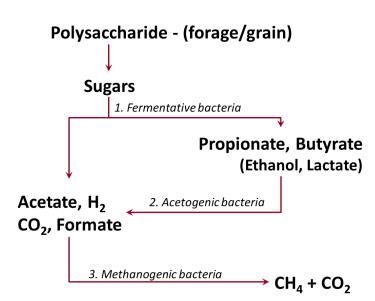
https://www.ers.usda.gov/publications/pub-details/?pubid=90925

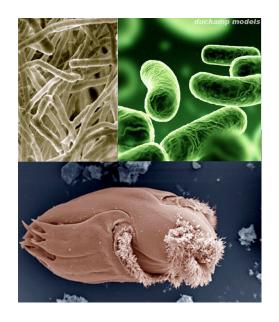
Enteric emissions ---point source and diffuse source

Needed: on-farm measurement capability (user friendly) to validate reductions

Why are Archea Good/Bad?

Chemical reactions Prevent


- Excess H₂ accumulation
- Subsequent decrease ruminal pH
 Reduction reactions can continue


For the animal...

Carbon lost as CH₄ = loss of energy

Quest...

Find an alternative H₂ sink....

Zelp (Zero Emissions Livestock Project)

- Currently in development (web says available in 2023)
- Worn constantly--works for 4 yrs
- Oxidizes 50-60% of the CH₄ and releases CO₂ and H₂O
- Subscription-based device (data for C-trading)
- Includes solar cell and thermoelectric generator
- Adding other sensors to increase value for producers
- Funding partners include: Cargill, Gates Foundation

Mitigation Strategies

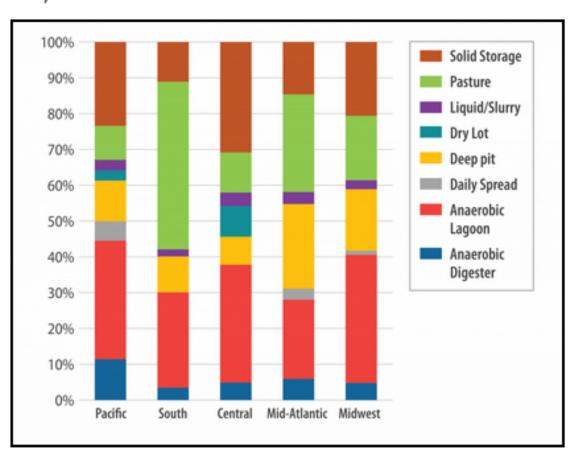
- High starch diets
- Resistant starches
- High quality forages
- Eliminate nutrient deficiencies
- Productivity enhancers
- Bromoform
- ► Lipid supplementation
- ► CRISPR-rumen microbes

- Pellet forages
- ► Ionophore use
- Ionophore persistence
- Protozoa inhibitors
- ► Shift site of digestion
- ► Slow-release nitrate
- Vaccination
- Genetic selection

Ventilated barns

https://agromatic.net/agro-air-dynamics/

Figure 3: Cooling pads in cross ventilation compost barn


Potential: Scrubbers/oxidizers on exhaust fans

https://www.munters.com/en/knowledgebank/articles-library/articles/cross-and-tunnel-ventilation/

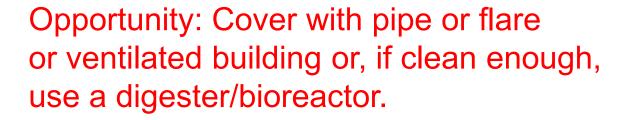
Manure emissions

Figure 3. Manure Management Practices on Dairy Farms in the U.S., 2018

Source data: USDA Agricultural Resource Management Survey; U.S. EPA GHG Inventory of Greenhouse Gas Emissions and Sinks: 1990-2018

Composting

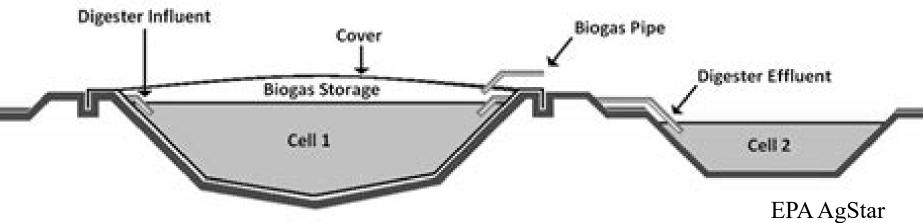
- Piles or windrows
 - Volume reduction, heat
 - Can be applied to improve soil quality and fertility
 - Can be sold
 - Requires large areas for storage and operation location must meet federal, state & local laws
 - Requires management temperature & oxygen (turning)


Opportunity: Cover. Add pipe or flare or ventilated building. If clean enough, use a digester/bioreactor.

Problem: soil contamination

Stockpiling

- Temporary storage of < 180 days
- Formation of crust
- Inexpensive
- Requires less management
- Location must meet all federal, state, and local laws


Research need: bioreactor technologies

Lagoon Systems

Challenges to reductions at these sources

Diffuse sources

Animals

Manure handling systems are farm specific

Focused sources

Compost piles

Stockpiles

Covered lagoons

Mechanically ventilated barns

Adoption

Available technology

Economics

Monitoring instruments at farm scale

Final thoughts

- 1. Concern that reductions in emissions will not be achievable without impacting other pollutant species.
- 2. Safety concerns
- 3. Whole system approach should be applied to strategies.
- 4. Social sustainability

Thank you

Kris Johnson, Dept Animal Sciences Washington State University johnsoka@wsu.edu

Potential of ZELP to Improve the Cargill Holistic Approach to Mitigate Enteric Methane

Emissions Alexandre Budan₁, Yairy Roman Garcia₂, Paola Piantoni₂, David Humphries₃, Yan Sun_{2 1} Cargill Animal Nutrition West Europe, Yffiniac, France 2 Cargill Animal Nutrition and Health, Elk River, MN, USA 3 CEDAR, University of Reading Hall Farm, Church Lane, Arborfield Reading, United Kingdom To support farmers to reduce methane emissions, Cargill implements a holistic approach including best farm management practices, feed nutrition and formulation, additives, and digital solutions. Prototypes of ZELP, a wearable digital device that can oxidize methane to carbon dioxide and water were evaluated in two preliminary trials to understand its effects on methane emissions, performance, and animal behavior. In Trial 1, four beef steers (462 kg of body weight) were adapted to respiration chambers, diet and ZELP. Chamber measurements of methane concentrations were obtained over four consecutive days on two separate weeks, where ZELP devices were fitted for two days or removed for two days each week in a crossover design. Methane production ranged from 24.3 to 30.4 g/kg dry matter intake without ZELP and from 13.0 to 22.5 g/kg dry matter intake with ZELP, showing a potential for ZELP to mitigate methane emissions from 25.8 to 53.3%. In Trial 2, 10 Holstein cows $(37.4 \pm 8.8 \text{ kg/d milk yield}; 271 \pm 53 \text{ days in})$ milk) were used in a crossover design with 8-d periods. Cows were randomly assigned to treatments, which were absence or presence of ZELP. Data and samples were collected during the last 3 days of each experimental period. ZELP did not affect dry matter intake (26.1 kg/d), yields of milk (36.4 kg/d), fat (1.55 kg/d) and protein (1.27 kg/d), rumination time (569 min/d) and eating time (183 min/d; all P >0.25). It was concluded that ZELP is a promising technology that can reduce methane emissions from ruminants without impairing animal welfare.