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The cost-effective core technologies

a) Average levelized cost b) Average levelized cost c) Average electric vehicle
of onshore wind energy@ of solar energy (EV) battery cost
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Deploying those core techs will keep us busy, but there’s plenty more still to be figured out...

Two main research frontiers for energy systems analysis:

1. Cost-related, drilling down on difficult emissions sources

2. Non-cost considerations
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Cost-related: what energy emissions will be the most difficult to avoid—and why?
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Net-zero emissions energy systems
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BACKGROUND: Net emissions of CO, by
human activities—including not only en-
ergy services and industrial production but
also land use and agriculture—must ap-
proach zero in order to stabilize global
mean temperature. Energy services such
as light-duty transportation, heating, cooling,
and lighting may be relatively straight-
forward to decarbonize by elec-
trifying and generating electricity
from variable renewable energy
sources (such as wind and solar)
and dispatchable (“on-demand”)
nonrenewable sources (including
nuclear energy and fossil fuels with
carbon capture and storage). How-
ever, other energy services essential
to modern civilization entail emis-
sions that are likely to be more
difficult to fully eliminate. These
difficult-to-decarbonize energy ser-
vices include aviation, long-distance
transport, and shipping; production
of carbon-intensive structural mate-
rials such as steel and cement; and
provision of a reliable electricity
supply that meets varying demand.
Moreover, demand for such ser-
vices and products is projected
to increase substantially over this
century. The long-lived infrastruc-
ture built today, for better or worse,
‘will shape the future.

Here, we review the special chal-
lenges associated with an energy
system that does not add any CO,
to the atmosphere (a net-zero
emissions energy system). We
discuss prominent technolog-

search, development, demonstration, and de-
ployment. It may take decades to research,
develop, and deploy these new technologies.

ADVANCES: A successful transition to a
future net-zero emissions energy system
is likely to depend on vast amounts of in-
expensive, emissions-free electricity; mecha-

ical opportunities and barriers A shower of molten metal in a steel foundry. Industrial
for eliminating and/or managing  processes such as steelmaking will be particularly
emissions related to the difficult- challenging to decarbonize. Meeting future demand for
to-decarbonize services; pitfalls such difficult-to-decarbonize energy services and industrial
in which near-term actions may products without adding CO. to the atmosphere may depend
make it more difficult or costly to on technological cost reductions via research and innovation,
achieve the net-zero emissions as well as coordinated deployment and integration of
goal; and critical areas for re- operations across currently discrete energy industries.

Davis et al., Science 360, 1419 (2018) 29 June 2018

nisms to quickly and cheaply balance large
and uncertain time-varying differences be-
tween demand and electricity generation;
electrified substitutes for most fuel-using
devices; alternative materials and manu-
facturing processes for structural materials;
and carbon-neutral fuels for the parts of the
economy that are not easily electrified. Re-
cycling and removal of

carbon from the atmo-
sphere (carbon manage-  geaq the ful article
ment) is also likely to be  at http:/dx doi

an important activity of ~org/10.1126/

any net-zero emissions Sclence.aas9793
energy system. The spe- o o
cific technologies that will be favored in
future marketplaces are largely uncertain,
but only a finite number of technology choices
exist today for each functional role. To take
appropriate actions in the near term, it is
imperative to clearly identify desired end
points. To achieve a robust, reliable, and af-
fordable net—zero emissions energy system
later this century, efforts to research, develop,
demonstrate, and deploy those candidate
technologies must start now.

OUTLOOK: Combinations of known tech-
nologies could eliminate emissions related
to all essential energy services and pro-
cesses, but substantial increases in costs
are an immediate barrier to avoiding emis-
sions in each category. In some cases, in-
novation and deployment can be expected
to reduce costs and create new options. More
rapid changes may depend on coordinat-
ing operations across energy and industry
sectors, which could help boost utilization
rates of capital-intensive assets, but this
will require overcoming institutional and
organizational challenges in order to create
new markets and ensure cooperation among
regulators and disparate, risk-averse busi-
nesses. Two parallel and broad streams of
research and development could prove use-
ful: research in technologies and approaches
that can decarbonize provision of the most
difficult-to-decarbonize energy services, and
research in systems integration that would
allow reliable and cost-effective provision of
these services. m
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Solar and wind are cheap, but their variability is like a hot potato.
Who can most afford to make it reliable?

When and where is it cheapest
to build firm generators?

Or pay people/industry to reduce their demand?

Or build lots of storage?
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Specialized techno-economic characteristics of long-duration energy storage
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Aviation and long-distance transport need energy-dense liquid fuels

Range (Mass-constrained)
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Sustainable Aviation Fuel (SAF) options are either pricey or supply-constrained
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Synthetic fuels
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Cement accounts for ~8% of
global CO, emissions (~2.6 Gt)
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fan
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Steel accounts for ~6% of
global CO, emissions (~2.0 Gt)

The Blast Furnace

Charge: iron ore, coke, limestone

o~
Coke used in "process”

Hot waste gases

Hot waste gases

Reduction of iron ore:
3C0O(g) + Fe,O,(s)—2Fe(l) £ 3CO,(9)

Limestone decomposes and

slag forms:

CaCo,(s) = Ca0(s) + CO,(q)

Ca0 (s) + Si0,(s) — Casio.(l)
sand slag

Carbon dioxide reacts

with coke:
CO,(g) + C(s)—2CO(qg)

Hot air reacts with coke:
C(s) + O,(g)—CO.(9)
Hot air blast

Hot air blast




Assessing potential reductions in cement emissions by fuel switching and using CCS
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And approaches to decarbonizing industrial heating

Heat Technologies: | HcatPump B ElectricResistanceHeater Hydrogen
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Evolution of energy system models

Decisions need
specificity

Technological detail

—_—

Time horizon
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Need to
anticipate
trade-offs,
feedbacks,

and synergies

Benefits manifest

over long-term
Davis, unpublished



State-of-the-science (cost-optimizing) energy system models
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Not strictly cost-related: often neglected but critical factors

Vast land areas developed in net-zero
scenarios raise many social, environmental,
and economic questions that we’ve only
begun to consider and assess.
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The distribution of benefits will differ substantially depending on details of the net-zero pathway

Net-zero, High-CDR

Net-zero, Low-CDR

15/17 | Non-cost factors (Air pollution and environmental justice)
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Renewables-related materials are distributed very differently worldwide than fossil energy resources

oo Electricity Net-zero, current trading partners
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Take-aways

Solar, wind, and electrification are core, cost-effective strategies, but two main research frontiers

1. Cost-related, ever more detail on the difficult stuff

* Targeted innovation: What tech costs and
performance characteristics that net-zero system
costs most sensitive to?

* Policy-related: How do different levels and types of
policy intervention change the outlook for specific
techs and system costs?

17/17 | Take-aways

2. Non-cost considerations, e.g.

Land and water: How will different natural resource
constraints affect desired pathways?

Political economy: Lock-in, regulatory capture,
national security and international trade

Social license: Jobs, environmental justice,
NIMBYism, perceptions of safety

Co-benefits/trade-offs: air quality, resilience to
extreme events, conservation,

-
=\



Thank you.

Much of the analysis | presented was led by postdocs

Jackie Dowling and Jing Cheng and graduate students ..o -

Candelaria Bergero and Dimitri Saad in collabo at

Nate Lewis, and Dan Tong.



Decarbonization

National Academies, 12 September 2024
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The fastest electrons in history

Wind and solar are growing faster than any other generation source in absolute terms

Annual generation after exceeding 100 terawatt-hours in a year
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° Source:
A century of gains L
for 1900s-2000s,
Battery energy density has improved 10-fold since the 1920s, and five-fold since the 1980s (leggg;t;ergZNOElFo
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Source:

PV module prices gapped down 50% e
Lafond (2016
with major
processing by Our
World in Data, IEA

PV module prices dropped 50% in 2023, and are down by more than 99% since 1975

PV module price per Watt, 1975 — 2023 2012 - 2023 (2023)
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Source:

Fuels, clean energy, and grids

Investment in clean energy and grids is now greater than fossil fuel investment was in the 2010s

$2.0 trillion of annual investment
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Clean energy
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Supplying demand

Wind and solar are close to meeting all incremental electricity demand

New wind and solar generation
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Growth engines, and fading motors

Electric vehicles were the only growth in global auto sales for the seventh year in a row

100 million passenger vehicles sold globally
Internal combustion
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Source:

Bending the curve

Official forecasts point to power load growth — but still below what NERC expected 20 years ago

2.5% 10-year electricity load CAGR from start year, forecast
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Consuming data

Data center power consumption is country-sized already

400 terawatt-hours of annual data center power demand
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Varying processes, varying strategies SR

New Energy
Outlook 2022

Hard-to-abate sectors have pledged 65 gigatons of abatement by 2050, with differing tech

Cumulative emissions By emissions abatement technology,
abatement pledges share of total abatement
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Sustainable volumes o

Sustainable aviation fuel volume is increasing markedly, but from a tiny base

2,000 million liters of sustainable aviation fuel produced annually
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CCS costs are not improving

And in fact, have only risen in academic studies since the 2000s

Techno-economic estimates of power-plus-CCS ($2022 per megawatt-hour)
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Three blocs, two paths Frsingan o

al. (2023), Global
Carbon Budget

US and EU emissions have declined this century; emissions elsewhere have not 2023

20 gigatons of CO, per year
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Copyright and disclaimer

Copyright © Nathaniel Bullard 2024. All Rights Reserved.

The opinions expressed in this presentation are solely those of the author. They do not purport to reflect the views
or opinions of Business Climate Pte Ltd.

The information provided in this publication is for informational purposes only. The author assumes no responsibility
or liability for any errors or omissions in the presentation. While the author makes every effort to provide accurate and complete

information, the author makes no representations or warranties, express or implied, about the completeness, accuracy, or reliability of the
information contained herein for any purpose.

nat@nathanielbullard.com
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