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Artificial Photosynthesis
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Natural Photosynthesis
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Photosynthetic Energy Transduction
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Semi-Synthetic Biohybrids

Photosystem |

PSI can supply light-generated electrons to drive catalysis
H* reduction by Pt nanoparticles
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Semi-Synthetic Biohybrids:

Semiconductor Nanoparticle + Enzyme
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Couple semiconductor nanoparticle light capture and charge generation and
seperation to redox enzyme catalysis



Semi-Synthetic Biohybrids:

Semiconductor Nanoparticle + Enzyme
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Nanoparticles can mimic biological redox partners (Ferredoxin) to drive enzyme
catalysis

« Electrostatic interactions between enzymes and nanoparticle ligand surface



Nanoparticle-Enzyme Biohybrids:

Photocatalysis
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Nanoparticle-Enzyme Biohybrids:

Quantifying Electron Transfer Kinetics

Conduction Band
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Quantifying electron transfer and quantum efficiency by time-resolved spectroscopy
Overall efficiency of photocatalysis determined by internal processes which must be
carefully analyzed and understood



Nanoparticle-Enzyme Biohybrids:

Controlling Electron Potential
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Nanoparticle diameter controls conduction band electron potential

* Quantification of electron transfer rates with varying potential allows study of
redox tuning in enzymes

* Elucidates enzyme properties key to their high rates and catalytic efficiency



Nanoparticle-Enzyme Biohybrids:

Mechanistic Investigations
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Biohybrid photocatalysis provides an opportunity to study catalytic turnover in novel ways
* Time-resolved spectroscopy of active site changes
 Temperature controlled catalysis — electron transfer conditions not available in biology
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Nanoparticle-Enzyme Biohybrids:

Cofactor Regeneration
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Ferredoxin NADP-reductase biohybrids photocatalyze
regeneration of NADPH
* Coupled to alcohol dehydrogenase to produce
biofuels



Nanoparticle-Enzyme Biohybrids:

Nitrogen Reduction

Industrial N, fixation (Haber-Bosch Process) Biological N, fixation
* High temperature and pressure * Ambient conditions
* Fossil fuel intensive (up to 1% of global * High biological energy demand

energy use)
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Nanoparticle-Enzyme Biohybrids:

Nitrogen Reduction
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Nanoparticle-Enzyme Biohybrids:

Mechanistic Investigations of Nitrogenase

Product Selectivity Reaction Mechanism
* H, is a co-product of NH, « Sequential electron transfer
* H,/NH; ratio changes with steps
reaction conditions * N, binding and reduction
) NH3 S Chica et al. JACS (in Review)
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Semi-Synthetic Biohybrids:

Nanomaterial-Enzyme Biohybrids
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Time-Resolved mechanistic studies of hydrogenase active sites



Semi-Synthetic Biohybrids:

Nanomaterial-Enzyme Biohybrids
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Semi-Synthetic Biohybrids:

Photosystem Il based Biohybrids

Linking Photosystem |l water oxidation to nanoparticle catalysis
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