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Two Step Process to Achieve
Complete Artificial Photosynthesis
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Thermodynamics of Fuel Formation

[ G° = -nFE° }

Water splitting to furnish H* /e~ (H,) is thermodynamically uphill:
2H,0 - 0, + 2H, (4H" + 4e7) Ec=-1.23V

CO, reduction with hydrogen to fuels is thermoneutral:

CO, + 6H* + 6e- - CH,OH + H,0 E°=0.17V
CO, + 8H* + 8e~ —» CH, + 2H,0 E°=0.03V
3C0, 4+ 18H* + 18e~ - /C;H,OH + 5H,0 E°=0.09V
4C0O, + 24H* + 24e- — i-C,H,0H + 7H,0 E°=0.11V
5C0, 4+ 30H* + 30e~ - ~CH,,OH + 9H,0 E°=0.08V

Chaplin and Wragg, /. Appl. Electrochem. 2003, 33,1107
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Self Healing Water Splitting

2H,0 m=)

% mm) O, + 4e + 4H"

Co phosphate oxide

B or Co-P(6%) alloy

s Two catalysts: one to split water to oxygen, the other to take the
leftover protons and electrons to make hydrogen

But how can sunlight drive these catalysts?




Self-Healing Enables ...
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operation under benign facile construction of
conditions and with any integrated devices
water source

(Boston Harbor, Charles River, waste
water, puddle from the ground)




The Artificial Leaf
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* Only coatings - no wires
* Works at solar flux
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Photosynthetic Membrane
PS I and PSII Replaced with the Artificial Leaf
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Bionic Leaf 1
(Water Splitting + Carbon Fixing Organisms)
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Natural Photosynthesis — All Artificial Photosynthesis

Photosynthesis
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The Bionic Leaf

Substrate




Re-engineered R. eutropha for Isopropanol Production
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Energy Efficiency Calculation

A.G° X N <— Gibbs free energy of CDR x moles of product
CXE

Melec <«— electric energy input for H, production

appl charge passed x voltage for water splitting

For isobutanol:

4C0,(g) + 5H,0(6) — C,H,,0(€) + 60,(g)

AGe (kjmol'1) N(mol) AG (k) C(Coul) E,; (V) CXE(K) Mo

+1951 8.98 x 10 1.56 2510 2.0 5.02 31%

==) for an 20% PV, 6.0% SFE




Bionic Leaf is Ten Times Better than

Natural Photosynthesis
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C10+ Fuels

4 C initially, then add 2 C at a time

Central Metabolism Initial Condensation
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Nitrogen: Another Biogenic Element in Air
Nitrogen Fixation Important as an Energy and Food Target

N2(g) + 1.5CH, + 1.50, » 2NHz(aq) + 1.5C02(g)

Haber-Bosch process:
* Energy intensive: 1~2% world energy supply
* High CO, emission: 3~5% world natural gas use




Bionic Leaf 2
(Water Splitting + Carbon/Nitrogen Fixing Organisms)
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Steps 1 and 2: (1) Split Water and (2) Fix H, with CO, to
Make Internal Cellular Energy Supply for Microbes
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Step 3: Microbe Uses Stored Energy and Hydrogen
to Make Ammonia
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(Spray, drip, fertigate)
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N-fixing U - Organic, long lived,
enzymes slow-release N fertilizer

Biological
energy

Energy
storing .
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Nitrogen fixation is an energy intensive process:

Nz + 8H* + 16ATP + 8e~ — 2NHs + H, + 16ADP + 16P,

This approach circumvents down regulation



A Living Biofertilizer

Xanthobacter autotrophicus
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Microbes Exposed to 1°N-Enriched N: after PPT Addition
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Can Determine TOF and TON from Acetylene Reduction

N2 + 8H* + 16ATP + 8e~ — 2NHs + H, + 16ADP + 16P,
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C2H> reduction into C2Hy:

127 + 33 uM C2Hz- h!
~12 mg/L Ntotal per day

1.0 ODspo:
2.8 x 108 mL~! (flow cytometry)

TON:
3.1 x 10° per cell (5-d)

TOF = 1.4 x 10* s~ per cell

5000 MoFe protein per cell
(Eur. J. Biochem, 1995)

~ 3 s7! per MoFe protein



A Living Biofertilizer

* ~150% increase in radish (model
crop) yield with biofertilizer

no biofertilizer = w/ biofertilizer

Poor soil revived
. by biofertilizer.
* Biofertilizer revitalizes 3- o "T Higher Yield. _
degraded soil, restores soil
fertility and biological activity

for better plant growth

Shoot Mass (g)

Loss of
soll fertility.

* Reverses damage to
agricultural soils
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Root Mass (g)



Lettuce and Sweet Corn (Midseason)

No Fertilizer Synthetic KMS8
100% Urea-Ammonium-NitrateS% UAN 50% K8

T Re L
Augrort o

Estimated KM8 delivers at least 60-65 1b N/acre



A Carbon Negative Fertilizer

Atmospheric CQ

CO,

* Carbon neutral: 4
Pro ducing synthetic N- Photosynt'hesis Respifation
fertilizer emits 245
million tons CO, /year

 Carbon negative: This is N
a CO,-negative fertilizer e
... after H, withdrawn
from PHB, carbon left

behind in soil ; microbes 5.
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Average US Farm: Sequester 16K 1b CO,

KM8 sequesters 16,000 Ib CO,

KM8 CO, sequestration per Ib N
-0.6141b CO,/Ib N

Total annual farm N demand

26,000 Ib N / year

1 farm = -16,000 Ib

sequestered CO,

using KM8

1

KM8

Aluik

)

Eliminate 125K 1b CO,

H-Bosch emits 109,000 1Ib CO,

H-Bosch CO, emissions perlb N
+4.21b CO,/1bN

Total annual farm N demand
26,000 1b N / year

1 farm = 109,000 Ib

using Haber-

Bosch

1

emitted CO,
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runoff & NO,

Note: Assumes 400 acre farm with 65 lb/acre N demand for 26,000 Ib N farm demand



Sunlight + Air 4+ Any Water
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Distributed Fuel (C neutral) and P|N Fertilizer (C negative)

Negative carbon budget my be large when high efficiency carbon fixation
(i.e., fast biomass) is interfaced to agriculture
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