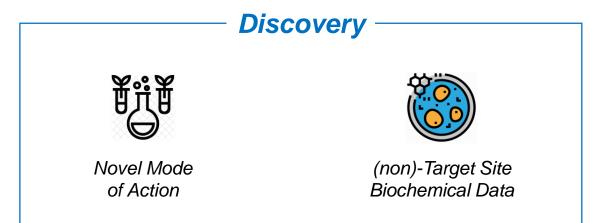


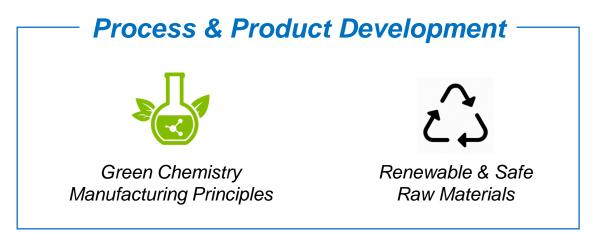
Innovations in Sustainable Agrochemistry

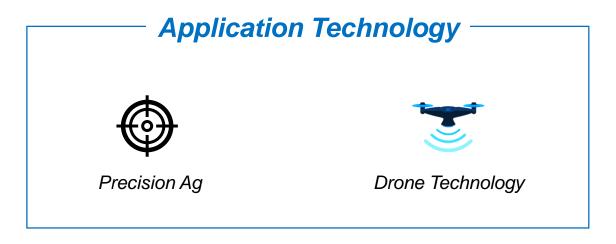
Tejas K. Shah

NASEM Chemical Sciences Roundtable Webinar November 12th, 2020

What Does Farming Look Like in 2020?







Agrochemistry Challenges & Opportunities

Sustainability is not only about the active ingredient!

Crop Protection Discovery

Strategic Platform of Active Generation Approaches

Design-Build-Test approach to analog design & optimization

Natural Products

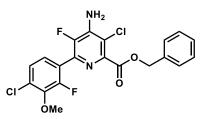
Bioactive Hypotheses

Competition Inspired

Active Generation

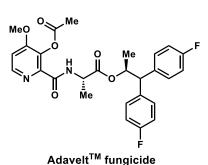
Lead Generation

Lead Optimization


Staged Molecules

Control weeds

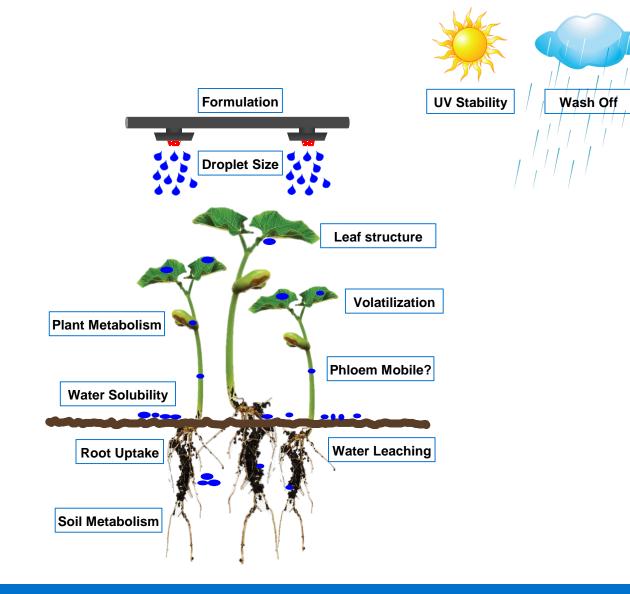
Herbicides help control weeds that compete with crops for light, moisture, and nutrients


RinskorTM herbicide (2018)

Manage diseases

Fungicides help prevent or cure fungal diseases; fungi are the #1 cause of crop loss worldwide1

Control crop-damaging pests


By managing harmful insects and nematodes, farmers protect yields and the health of their

Difficulty of Delivering an Agrochemical Solution

- **Absorption**
- **Distribution/Translation**
- Metabolism
- **Degradation**

Many variables before and after spraying

Essential properties differ depending on research area

Sustainable Active Ingredient Design

Product Design

Crop protection products are designed for high efficacy and minimal environmental impact

- Aquatic toxicity
- Ground water leaching
- Mammalian toxicity
- Soil degradation
- Beneficial insect safety

Tools & Capabilities

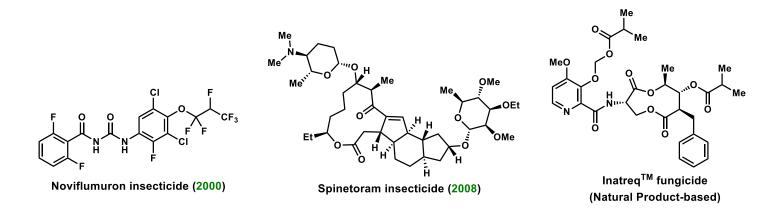
Early High Throughput Screening

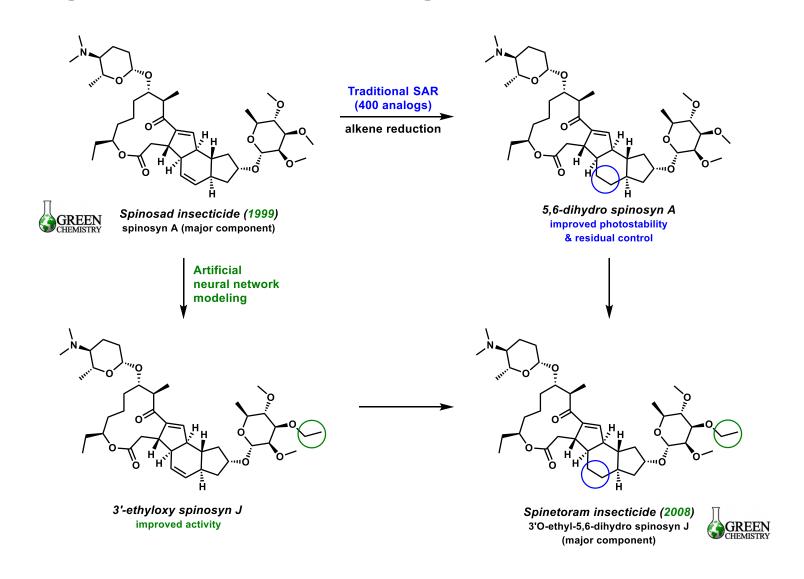
Mode of Action Determination Assays

Biochemical Assays for Resistance Type

in-Silico Models

Machine Learning


Presidential Green Chemistry Challenge Awards


The Design of Greener Pathways

The Design of Greener Reaction Conditions Award

The Design of Greener Chemicals Award

Combining Traditional Design With Computer-Aided Design

Improved efficacy & residual control Expanded spectrum

Natural Product derived Active Ingredient

On-Going Discovery Challenges

Novel Mode of Action

(non)-Target Site Biochemical Data

Dearth of protein crystal structures related to plants, insects, & fungi

Limited funding for academic research in agrochemistry compared to pharmaceuticals

Basic research in organic chemistry and chemical biology not applied to crop protection

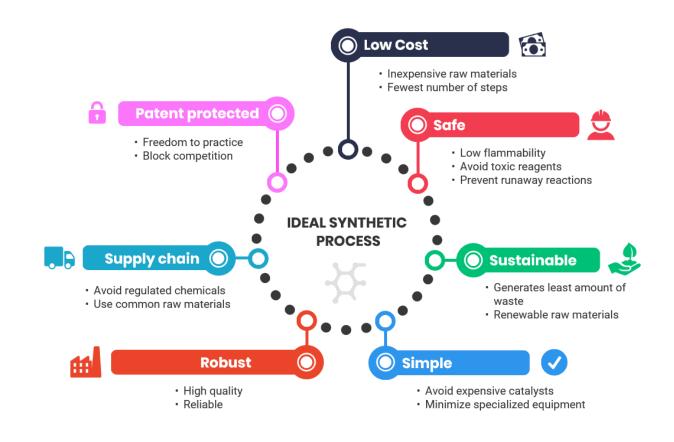
Sustainability with Manufacturing Process in Mind

Process Design

Production volumes are much higher than pharma although structural complexity is similar

- Global glyphosate use in 2014 was 750,000 MT¹
- Other top products are ~10,000 MT/yr

Process Optimization Tools

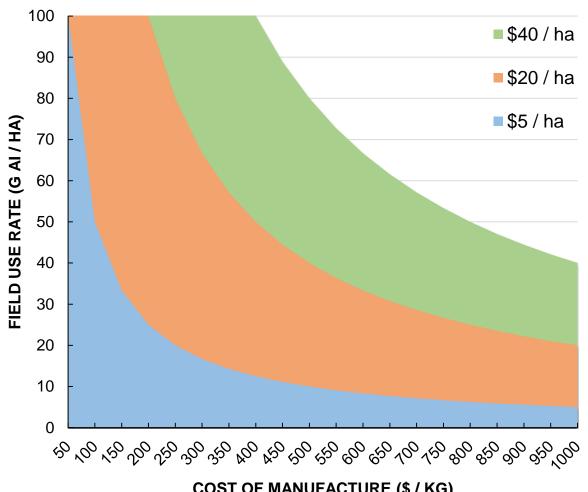

High-Throughput Experimentation & Design of Experiments

Route Evaluation Metrics

Cost-effective (\$X/kg)

Available on >100 MT

Renewable/sustainable



Sustainability with Cost of Manufacturing in Mind

(Field Use Rate) x (COM) = \$/ha

x g	\$ y	1 kg		\$
ha	kg	1000 g	= -	ha

Farmers have a budget per hectare

COST OF MANUFACTURE (\$ / KG)

1 Hectare equals ~ 1 professional baseball field

Sustainably-Focused Process Development

Route Identification

Renewable carbon content = 41%

Furfural raw material

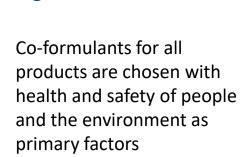
- Renewable Feedstock
 - \$~1/kg

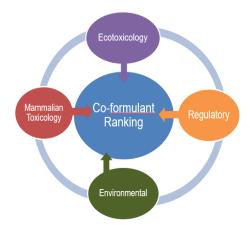
Process Optimization: Unchained Labs HTE Instrumentation

- Yield
- Selectivity
- Cost, availability, safety & sustainability of reagents
- Cost, availability, safety & sustainability of solvents

~400 reactions conducted (acids, reductants, solvents)

Replaced Et₃SiH with PMHS


PMHS (\$2/mol hydride) is a by-product of the silicone industry¹


Sustainable Formulation Science Successes

Enlist Sustainable Ingredients

Products are developed with formulation technology that enables products to apply and stay on-target

Farmer Convenience

Award winning products leverage expertise in product design, multi-component formulations, and controlled release to deliver customer-friendly features

Products are designed with local conditions and endusers in mind and tested in grower-specific applications.

On-Going Process & Product Development Challenges

Green Chemistry Manufacturing Principles

Renewable & Safe Raw Materials

"Green" & low-cost catalytic reactions

Ability to synthesize chiral agrochemical products with cost in mind

Limited formulation science education and research in academic settings

Sustainability of Agrochemistry

Novel Mode of Action

(non)-Target Site Biochemical Data

Process & Product Development

Green Chemistry
Manufacturing Principles

Renewable & Safe Raw Materials

Application Technology

Precision Ag

Drone Technology

Product Stewardship

Farmer Training

Integrated Solutions

Next Generation of Farmers

Conscience Consumers

People

Fruitful Collaborations

Diversity of Scientists, Farmers & Consumers

People Drive Change

Farmers Adopting New Sustainable Technologies & Practices

Consumers Requesting Sustainably Grown **Food**

Diversity is a Pillar of Sustainability

Collaborations Lead to Success

Mode of Action

Natural Products

Green Chemistry

Regulatory

Machine Learning

Conclusion

Sustainability should be a whole system approach

Machine learning and automation will drive the future of sustainable agrochemistry

Numerous sustainable products on the market with many based on natural products

Manufacturing, formulations & "Green Chemistry" are key attributes for a sustainable product

Solving agriculture's biggest challenges will require **creative scientists** with different skill-sets, **new tools** and **partnerships** from around the world

