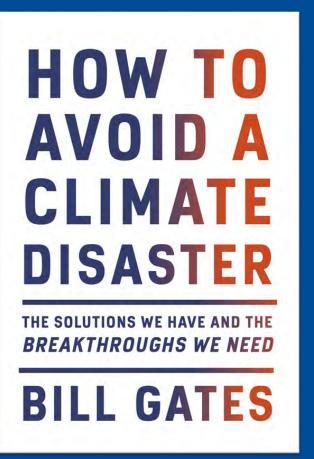


Dr. Raghubir Gupta, Co-Founder / President March 9, 2021

What We Do

Susteon Mission

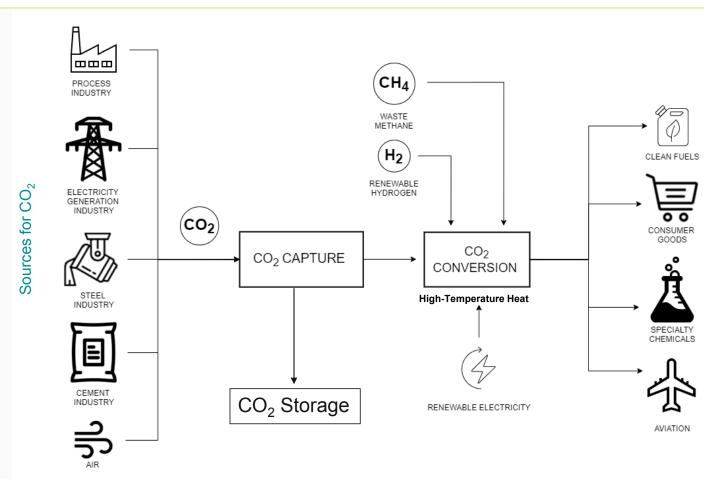
To develop and deploy technologies that **significantly reduce** greenhouse gas emissions by enabling disruptive innovations in **CO**₂ **capture and CO**₂ **utilization** and **H**₂ **production**


Susteen Approach De-risk technologies through extensive prototype development and testing while securing a strong IP position

Susteon Process

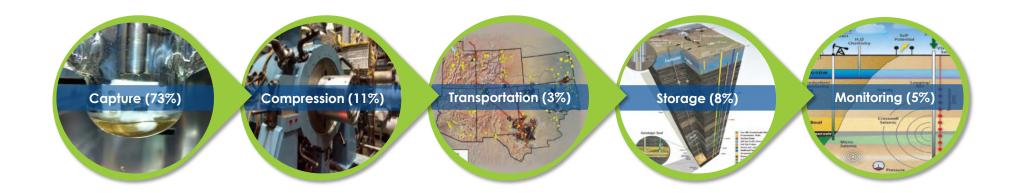
Climate Change Affects Everything

As Bill Gates outlines in his recent book, to solve Climate Change, we must reimagine the way we live as a society, specifically:

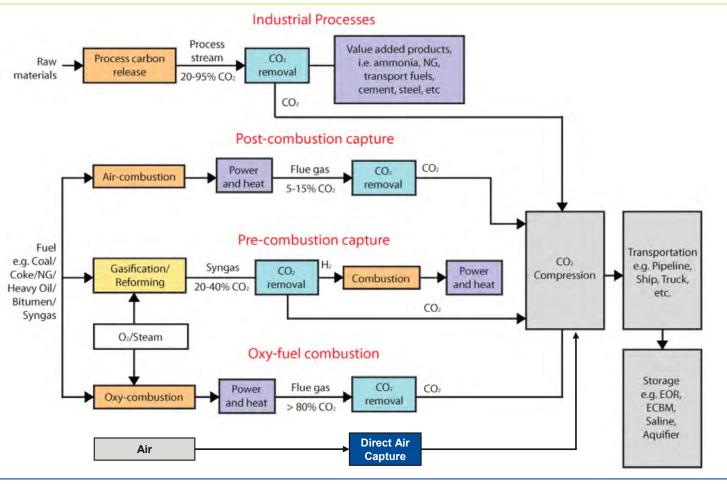

- How we plug-in
- How we make things
- ☐ How we grow things
- □ How we get around
- ☐ How we keep cool and stay warm

CO₂ plays a large role in solving these issues...

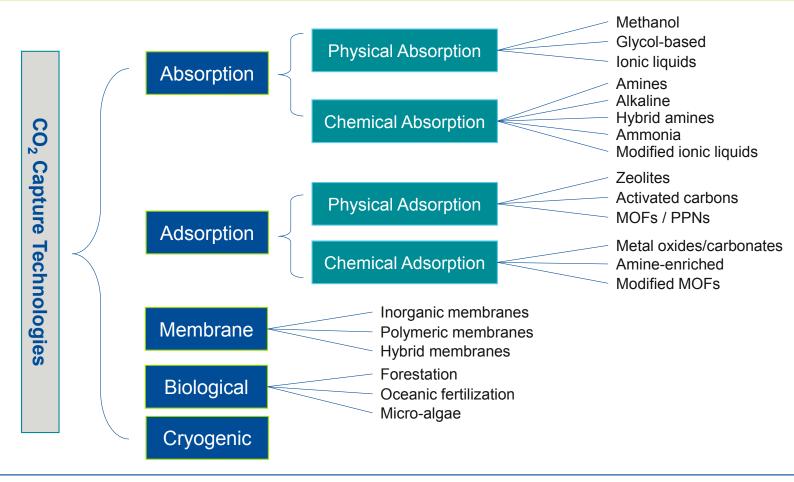
CO₂ Capture, Utilization, and Storage (CCUS)



- Our current task is to tackle the ~40 GT/yr CO₂ emissions that we are currently putting in the atmosphere.
- To do this, we need to look at all sources of CO₂ and consider all methods of capture, utilization, and storage.
- The ongoing challenge is lack of a regulatory framework, economic incentives, and poor understanding of CCUS value chain.


CCUS Value Chain Costs

CO₂ Capture Technologies



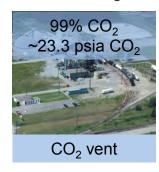
- These pathways
 represent ~50-60% of
 CO₂ emitted globally.
- Essentially all fossilbased power requires post-combustion capture.
- Choice of CO₂ capture technology depends on the CO₂ concentration, temperature, pressure, and other characteristics of gas stream.

CO₂ Capture Pathways

Source: Song, 2020 7

Source Concentration – Challenge or Opportunity

Coal Power Plant


Gas Power Plant

Air Capture

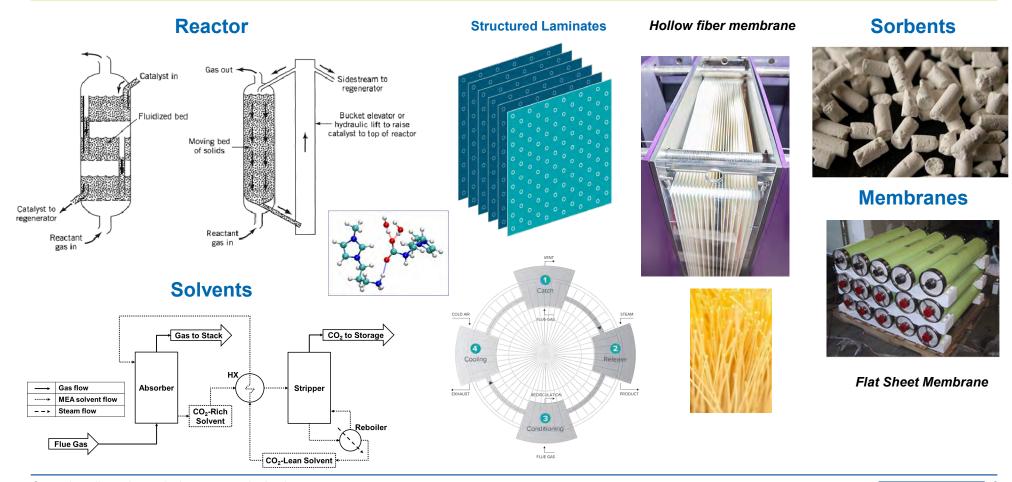


NG Processing Plant

Ammonia Plant

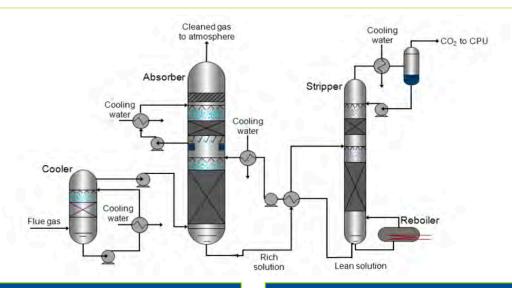
Ethanol Plant

Distillation gas


Cement Plant

Kiln off-gas

Capture = Materials + Specific Process

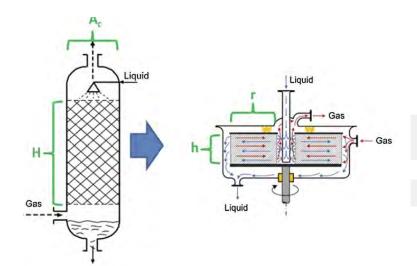


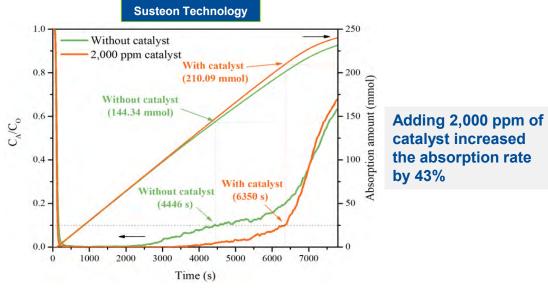
Solvent-Based Post Combustion CO₂ Capture Technologies

- CO₂ capture is a temperature swing absorption process.
- Typical solvents: Primary, secondary, tertiary, hindered amines such as MEA, DEA, MDEA, TEA, 2-AMP, ...
- The CO₂ product has high purity >99% with traces of amine and oxygen.
- Process design parameters: CO₂ recovery, Gas flow rate, absorption/desorption rate, lean and rich amine CO₂ loading, approach to equilibrium and L/G ratio
- Advanced solvents that have lower regeneration energy requirement than existing amine systems, combined with high CO₂ absorption capacity and tolerance to flue gas impurities.
 - water-lean solvents,
 - phase-change solvents,
 - high performance functionalized solvents

Commercialization Challenges

- · Low overall absorption rate
- High regeneration energy
- · Solvent loss due to degradation
- Solvent loss due to emissions
- Corrosion
- · Wastewater treatment


Technology Providers

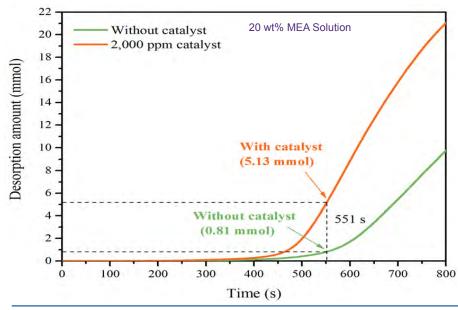

- Mitsubishi KS-1 & KS-2 Solvents
- Shell Cansoly
- BASF OASE® blue
- Aker Solutions ACCTM
- Fluor Econamine FG PlusSM

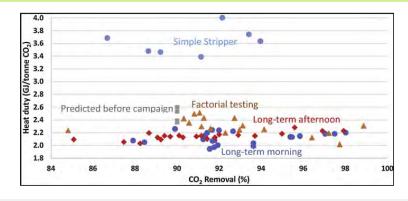
Low Overall Absorption Rate for Amine-Based Solvents

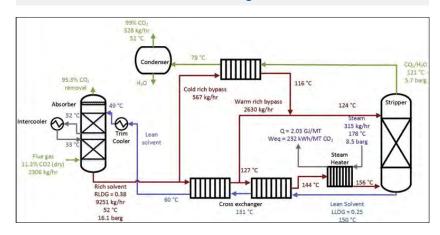
- Low mass transfer rate between gas and liquid
 - Packing designs for better contacting
 - Absorber column height (high capex)
 - Process intensification based on increasing gas-liquid mass transfer rate
- Catalytic additives to enhance absorption rate

Process intensification –Enhanced gas-liquid mass transfer using a rotating packed Bed (RPB)

Intensification factor ≈ 10 reported in literatures for acid gas treating


Source: Qian et al, I&EC 2012

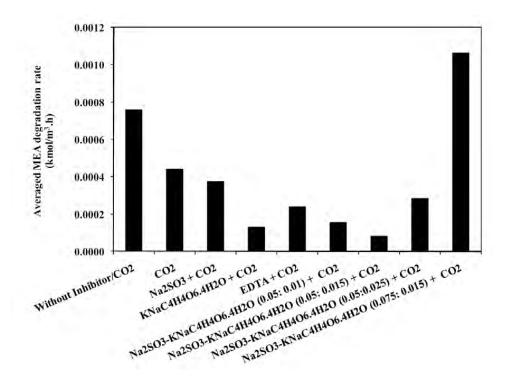

High Regeneration Energy for Amine-Based Solvents


- Varies between 2.1 to 3.8 GJ/t of CO₂
- Largest contributor to CO₂ removal cost

Susteon's catalytic additive can potentially reduce overall energy by 30%

Process Optimization: Advanced Flash Stripper, ultrasound-assisted regeneration, etc.

Source: Gary T. Rochelle, Yuying Wu, Eric Chen, Korede Akinpelumi, Kent B. Fischer, Tianyu Gao, Ching-Ting Liu, Joseph L. Selinger, "Pilot plant demonstration of piperazine with the advanced flash stripper," International Journal of Greenhouse Gas Control, Volume 84, 2019, Pages 72-81,


Other Engineering Challenges

Oxidation, thermal degradation and side reactions with gas contaminants such as NO_x , SO_x and PM

Inhibitors:

- Oxygen scavengers, ex: Na₂SO₃
- Radical scavengers, ex: EDTA, NH₄OH
- Solvent loss due to emissions
 - Solvent entrainment (mitigated by de-mister)
 - Solvent volatility (mitigated by water wash)
 - Aerosol/acid mist induced emissions can cause significant amine loss (>10% total inventory per year)
 - No commercial solution yet to properly mitigate this issue
 - Emissions of solvent degradation products such as Nitrosamines and some lighter aldehydes imposes significant health and safety issues.

Sorbent-Based CO₂ Capture Technologies

Physical Adsorption

Alumina

• MOFs

Zeolites

- PPNs
- · Activated carbons

Commercialization Challenges

- CO₂ concentration in flue gas
- · Competition with water
- Degradation with O₂
- · Flue gas contaminants
- Long-term stability

Reactor/Process Design

- Fixed/Fluidized-bed reactor
- Structured bed (monolith/laminates)
- · Gas/solid contacting
- · Heat and mass transfer
- Pressure drop

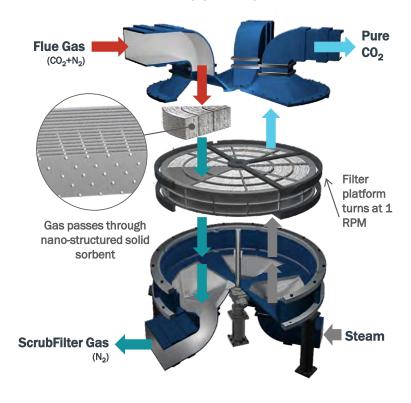
Chemical Adsorption

- Alkali oxides / carbonates
- Alkali earth oxides / carbonates
- · Amine encapsulated

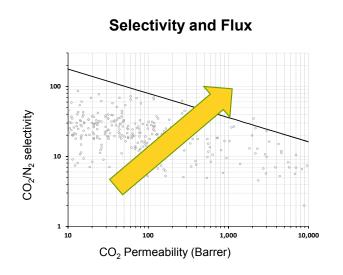
Hybrid

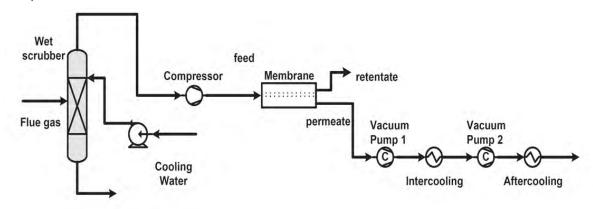
Amines + MOFs

Attrition


Corrosion

Disposal & Loss




Svante CO₂ Capture System (Exploded View)

Membrane-Based Post Combustion CO₂ Capture Technologies Susteen

- · Conventional polymeric membranes polysulfone and cellulose acetate
- Non-facilitated transport membranes: "solution-diffusion" transport process whereby the permeate first dissolves into the membrane and then diffuses through it – Pebax, PDMS, MTR Polaris™ membranes
- Facilitated transport membranes: "solution-diffusion" characteristics + an active agent in the membrane to increase flux and selectivity
- Composite membranes (MOFs + polymers)

- Good for CO₂ concentration of >10 vol%
- Typically, CO₂ purity is low and will require significant downstream purification.
- CO₂/N₂ selectivity >50 does not help, but higher flux leads to lower membrane cost

Major CCUS demonstration projects

Air Products Facility (Port Arthur, TX) – operations began in 2013

- · Built and operated by Air Products and Chemicals Inc. at Valero Oil Refinery
- State-of-the-art system to capture CO₂ from two large **steam methane reformers**
- Over 5.0 million metric tons of CO₂ captured and transported via pipeline to oil fields in eastern Texas for enhanced oil recovery (EOR) since March 2013

ADM Ethanol Facility (Decatur, IL) – operations began in 2017

- Built and operated by Archer Daniels Midland (ADM) at its existing biofuel plant
- CO₂ from ethanol biofuels production captured and stored in deep saline reservoir
- First-ever CCS project to use new U.S. Environmental Protection Agency (EPA) Underground Injection Class VI well permit, specifically for CO₂ storage
- 1.3 million metric tons of CO₂ stored, since April 2017

Petra Nova CCS (Thompsons, TX) – operations began in 2017

- Joint venture by NRG Energy, Inc. (USA) and JX Nippon Oil and Gas Exploration (Japan)
- Demonstrating Mitsubishi Heavy Industries' solvent technology to capture 90% of CO₂ from 240-MW flue gas stream (designed to capture/store 1.4 million metric tons of CO₂ per year)
- Nearly 3.3 million metric tons of CO₂ used for EOR in West Ranch Oil Field in Jackson County, Texas since January 2017

Boundary Dam (SaskPower - operations began in 2016

- First (and the largest at the time) CO₂ capture plant from a coal-fired power plant
- Based on **Shell-Cansolv** license, engineered and constructed by SNC-Lavalin.
- · Started in 2014, fully operational in 2016
- 3.7 million metric tones of CO₂ mostly used for enhanced oil recovery in Weyburn oil field, transportation via 66 km pipeline.

Direct Air Capture – Challenges and Opportunities

· Highly selective

- $N_2 + O_2$ is 2500 times as abundant, H_2O : 10 100 times.
- 1 ton of CO₂ removal requires flowing 3,200 tons of air (@50% removal)

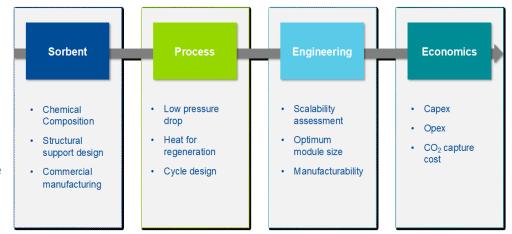
Minimal binding energy

• $\Delta G_0 \le -22 \frac{kJ}{mol}$ (implies chemical binding) – Energy of mixing

Fast kinetics

• But tempered by inherently slow air-side transport

High capacity


 Particularly for thermal activation (lots of energy wasted in the bulk material)

Dirt cheap

• 1 ton CO₂ per kg of sorbent requires 10,000 to 100,000 cycles

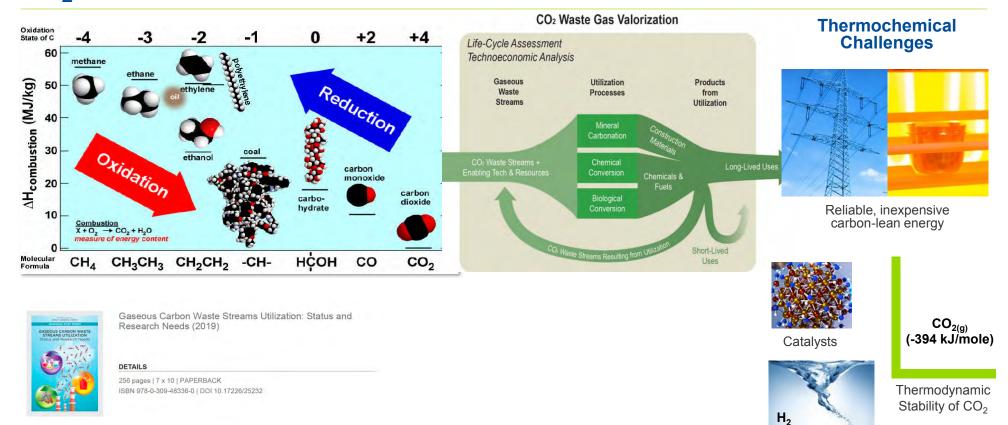
Tough as nails

 Must survive >100,000 capture and regeneration cycles, sunshine, heat, cold, wind, dust ...

17

Direct Air Capture – Current Technology Status

- Several start-ups have working prototypes
- Different approaches, different markets
- Gaining experience, demonstrating costs
- Establishing a new technology
- New players are joining
- Research is proceeding at several universities:
 - ASU
 - Georgia Tech
 - Columbia University
 - ETH Zurich
 - **Sheffield University**
 - **Zhejiang University**



Commercial Interest is growing, carbon price incentives are starting, corporate world is investing

CO₂ Utilization

If inexpensive reductants are available, CO₂ could serve as a carbon feedstock for traditional products.

Source: Banholzer, 2008

Summary

- Current 51 GT/yr annual global GHG emissions, CO₂ is responsible for ~80% of the GHG emissions.
- Chemical/energy industry sectors account for >50% CO₂ emissions.
- Solvent-based CO₂ capture technologies are most advanced and can be used effectively for the point sources.
- There are still scale-up and solvent degradation challenges which are being addressed.
- Regeneration energy is the largest component of the CO₂ capture costs.
- Direct air capture has to be part of portfolio of solutions to achieve net zero emissions by 2050.
- CO₂ utilization offers some interesting options to make products, but scale to match CO₂ emissions with utilization options is a challenge.

We can take on this challenge

Despite this daunting challenge, this problem is solvable; but only with an interdisciplinary approach and the best minds engaged, we can achieve this goal!

Thank you

Dr. Raghubir Gupta

(919) 889-7183

rg@susteon.com

Creating solutions for a net zero world

