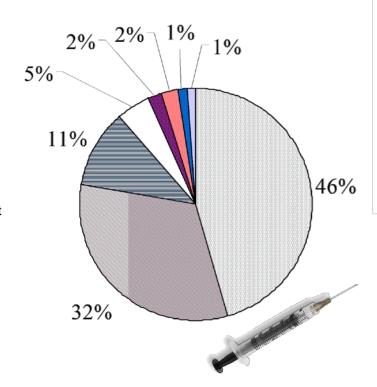

Innovative drug products in the pipeline

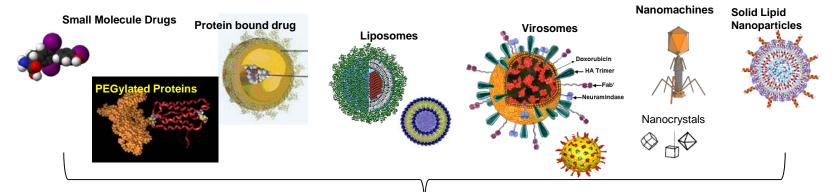
David Lechuga-Ballesteros, Ph.D.

Research Fellow, AstraZeneca Pharmaceuticals

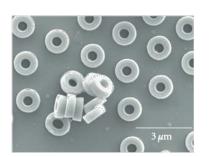

The active pharmaceutical ingredients

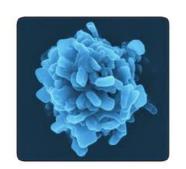
Technological challenges delivery of biologics

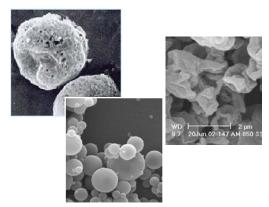
- Parenteral most common route of administration
- Many require refrigeration
- Poor physical stability
- (short and long term), most in dispersion/suspension
- Poor oral bioavailability, most in dispersion/suspension
- Portability challenges transporting solution vs. solid
- (i.e.: Cold chain needed for vaccines and most biologics)



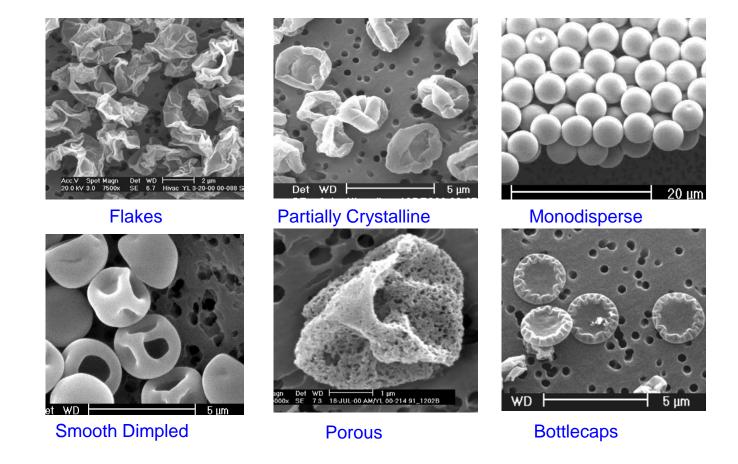
□ Lyophilized
□ Solution
□ Suspension
□ Depot
■ Tissue
□ Oral forms
■ Frozen solution


Other

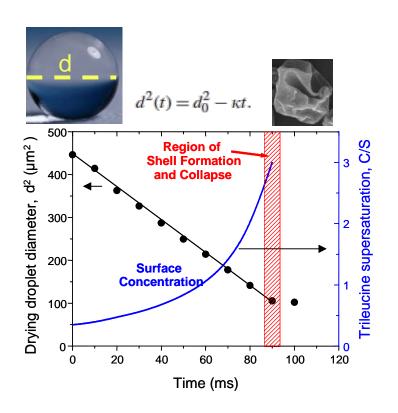

Drug delivery via microparticles

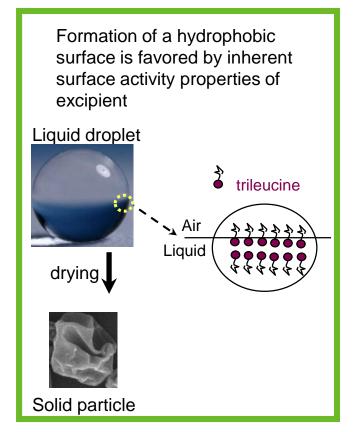

Molded microparticles

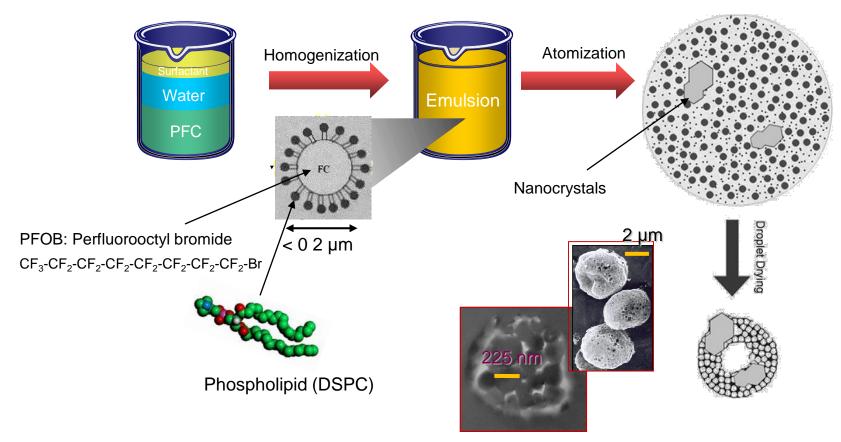
Crystalline protein carriers

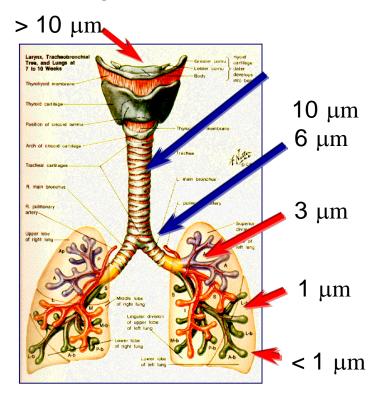


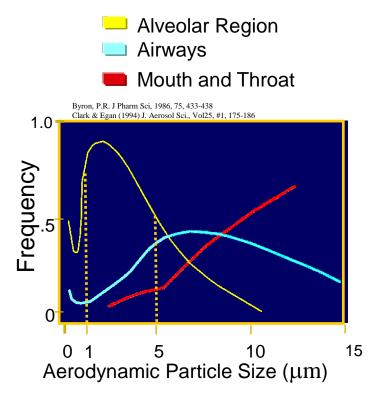
Spray dried microparticles



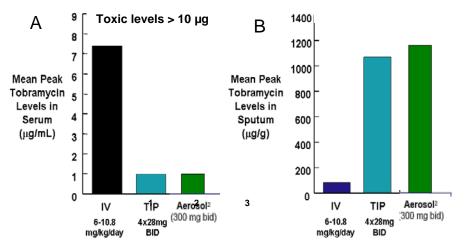

Microparticle Engineering via Spray Drying

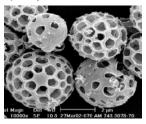

Particle design via spray drying based on molecular weight, solubility and surface tension on formulation components




Low density spray dried particles are ideal for pulmonary delivery

Pulmonary deposition is driven by the Aerodynamic Particle Size

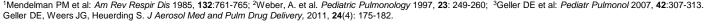



Targeting the lung: Inhaled antibiotics in powder form

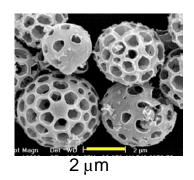
Increased efficacy and improved safety profile over IV treatment and improved patient experience with reduced does over nebulized tobramycin solution

Inhalation achieves 10X tobramycin concentrations in sputum and reduces systemic exposure 7X

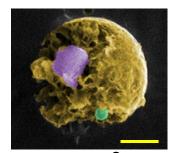
Spray dried tobramycin


Dry powder inhalation: 224 mg/day 8 inhalations over 10 minutes

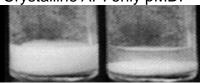
Nebulized solution inhalation: 600 mg/d 2 inhalation sessions over 30 minutes



Pulmonary drug delivery via spray dried microparticles in a Metered Dose Inhaler


Spray dried particles, carrier

Crystalline API


Drug + Carrier

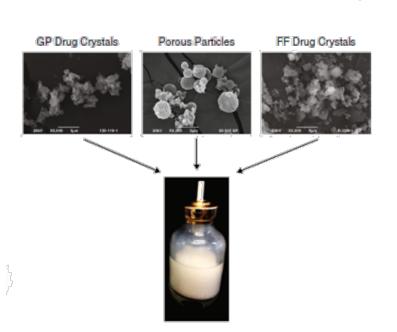
2 μm

Low solubility in propellant (hydrofluoroalkanes) and low adhesive nature of porous particles results in longer flocculation, creaming times.

Crystalline API only pMDI

0 seconds → 5 seconds

Co-suspension pMDI



0 seconds \rightarrow 15 seconds \rightarrow 30 seconds

Co-suspension delivered dose is more robust than drug crystal only suspensions

Delivery from innovative co-suspension technology MDI

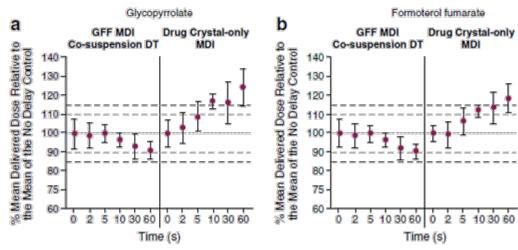
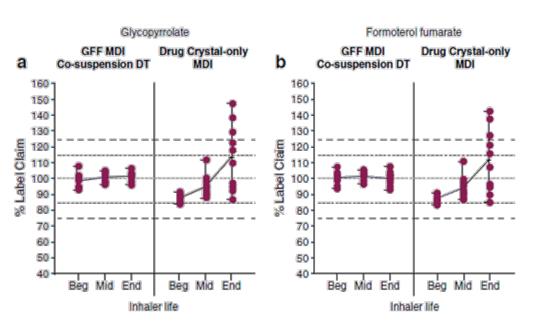
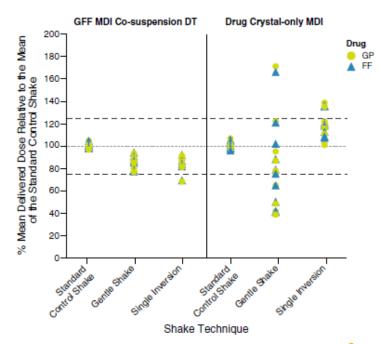
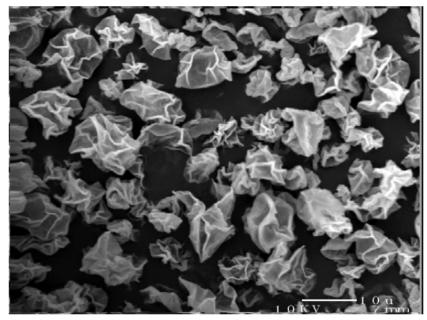




Fig. 7. Delay from shake to actuation of up to 60 s does not impact mean delivered dose of GP and FF more than 10% for GFF MDI, which is formulated with the co-suspension delivery technology MDI. In contrast, the drug crystal-only MDI group showed higher variability in drug delivery with delays from shake to actuation. All results are presented relative to the zero delay for each MDI

Co-suspension drug delivery is more consistent than drug crystal only suspensions



Doty et al. 2018 Drug Delivery from an Innovative LAMA/LABA Co-suspension Delivery Technology Fixed-Dose Combination MDI: Evidence of Consistency, Robustness, and Relability. AAPS PharmSciTech, Vol. 19, No. 2, (# 2017) DOI: 10.1208/s12249-017-0891-1

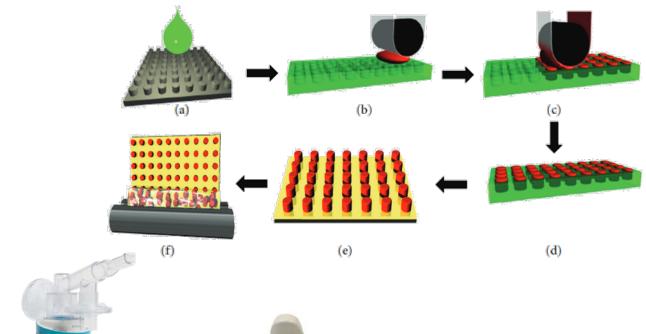
Levodopa spray dried powder for inhalation

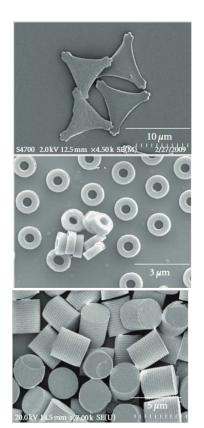
AIR Technology

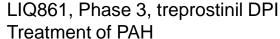
48 mg/capsule X 2

Inbrija for the treatment of Parkinson's disease. FDA approved 2018

AIR spray dried powder for inhalation scale up


Powder Production Scale-up




- o Approximately 30 minutes of production each
- Scale-up of powder production by > 100,000 times

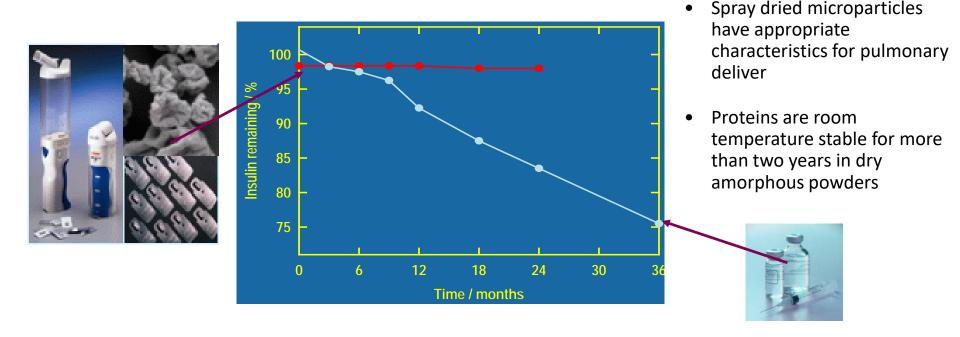
Molded microparticles, treprostinil powder for inhalation

Pulmonary delivery of therapeutic peptides, proteins

2010-2020

20 biomolecules in clinical development 10 remain active

Droducts

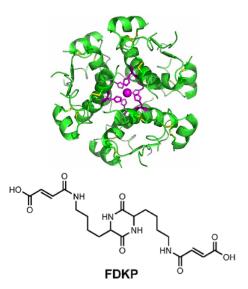


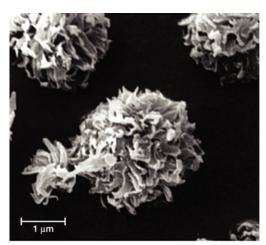
Pulmonary delivery of therapeutic proteins

Product	Active	Status	Device	Manufacturing	Storage
			Nebulizer	Liquid blending	
Pulmozyme	Dornase alfa	Available Since 1993			Refrigerated
			Dry powder	Spray drying	
Exubera	Insulin	Discontinue d 2006-2008			Room temperature
			Dry powder	Crystallization/ freeze drying	
Afrezza	Insulin	Available Since 2013			Refrigerated

Microparticles provides room temperature stability and enable pulmonary delivery for insulin

Spray drying manufacturing process




Commercial

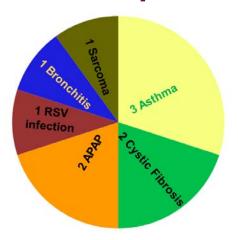
Crystalline microparticles manufactured via crystallization followed by freeze drying enable insulin pulmonary delivery

fumaryl diketopiperazine

Technosphere

Technosphere manufacturing process

Tanks for tangential flow diafiltration



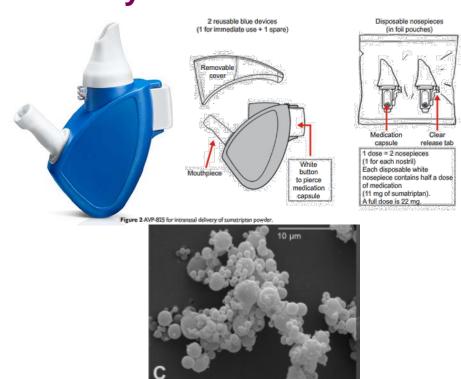
Formulation suite showing tanks and reactor used for manufacture of Technosphere particles

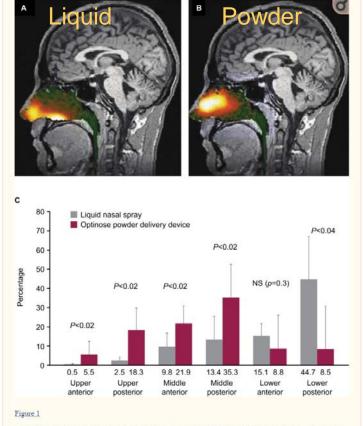
Cryogranulator used to form Technosphere Insulin pellets prior to lyophilization

Current pulmonary products cover topical indications

	Active ingredient	Indication	Clinical Phase	Dose	Formulation	Process
ALX-0171/VR465	Trivalent RSV F-Protein	RSV Infection	Phase 2b		Liquid	Liquid blending
Aidornasa alfa PRX-110	Actin-inhibition resistant deoxyribonuclease (37kD)	Cystic Fibrosis	Phase 2	2.5 mg/d	Liquid	Liquid blending
ALX-009 Lactoferrin	antibacterial blycoprotine (80 kD)	Cystic Fibrosis	Phase 1	4 mg/mL	Liquid	Liquid blending
Alteplase	Tissue plasminogen activator (tPA) (70kD)	Plastic bronchitis	Phase 2	5 mg every 6h	Liquid	Liquid blending
Molgramostim	rh-GM-CSF	APAP	Phase 3	300 µg/d	Liquid	Liquid blending
GM-CSF	GM-CSF (14kD)	APAP	Phase 2	150 μg/d	Liquid	Liquid blending
VR942/UCB4144	Anti-IL-13 Fab	Asthma	Phase 1	0.5 to 20 mg/d	Dry powder	Spray drying
AZD1402/PRS-060	Anticalin (18 kD) IL-4Rα	Asthma	Phase 1b	BUSCAR	Liquid	Liquid blending
CSJ117	Anti TSLP Fab (46kD)	Asthma	Phase 2	BUSCAR	Dry powder	Spray drying

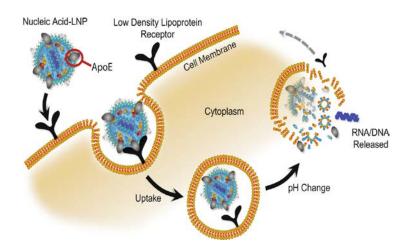
APAP: Autoimmune Pulmonary Alveolar Proteinosis

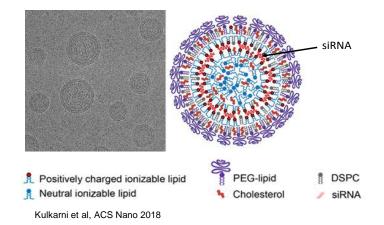

Nasal Delivery via Microparticles


Examples of nasal microparticle powders.

Drug	Microparticle type	Excipient/s	Manufacturing method	Ref.
Gentamicin	Microsphere	Hyaluronic acid	Solvent evaporation	(Lim et al., 2000)
		Chitosan glutamate		
		Hyaluronic acid/chitosan glutamate		
	Microparticle	Chitosan hydroglutamate	Solvent evaporation	(Lim et al., 2002)
		Hyaluronic acid		
		Chitosan hydroglutamate/hyaluronic acid		
Granisetron	Microparticle	Hydroxypropyl-β-cyclodextrin	Freeze drying	(Cho et al., 2010)
		Hydroxypropyl-β-cyclodextrin and sodium carboxymethylcellulose		
Insulin	Microparticle	Thiolated chitosan-4-thiobutylamidine	Emulsification solvent	(Krauland et al., 2006a)
			evaporation	
	Microsphere	Starch with lysophosphatidyl choline	Freeze drying	(Illum et al., 2001)
		Starch with glycodeoxycholate		
		Starch with sodium taurodihydroxyfusidate		
Lorazepam	Microparticle	Hydroxypropyl-β-cyclodextrin + mucoadhesive polymer	Spray drying	(Jug and Bećirević-Laćan,
		(hydroxypropylmethylcellulose and/or carbomer)		2008)
	Microparticle	Poly(vinylalcohol)	Spray drying	(Zhao et al., 2012)
		Poly(vinylpyrrolidone)		
Metodopramide	Microsphere	Sodium alginate	Spray drying	(Gavini et al., 2005)
		Chitosan hydrochloride		
		Sodium alginate/chitosan hydrochloride		
Ropinirole	Microparticle	Poly(lactic-co-glycolic)acid/dipalmitoylphospatidylcholine/trimethylchitosat	n Spray drying	(Karavasili et al., 2016)
Tacrine	Microparticle	Chitosan/pectin polyelectrolyte	Spray drying	(Saladini et al., 2013)
Verapamil	Microsphere	Chitosan	Spray drying and	(Abdel Mouez et al.,
-	-		precipitation	2014)

Nasal Sumatriptan Dry Powder Delivery





Imaging of intranasal delivery of (A) conventional liquid spray (radiolabeled diethylene triamine pentaacetic acid) vs (B) powder (radiolabeled lactose) with the breath-powered device and (C) quantification of deposition patterns.

Gene delivery: transfection of human cells via SLNP

Deliver mRNA for gene expression

PBS Control

R011=
2.770e+05

3.366e+05

R013=
5.5

5.4

5.3

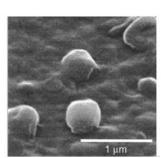
5.2

5.1

5.0

x10**
ysec(cm²/sr

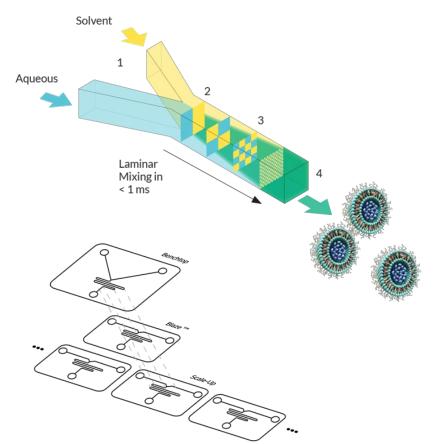
GenVoy-ILM w/ luciferase mRNA (1 mg/kg)


mouse 7*
2.666450

mouse 9*
4.2764100
5,9334400

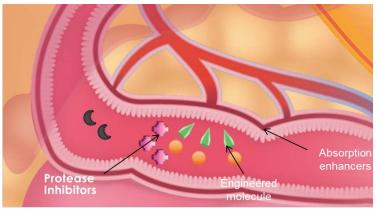
1.0
0.5
x10*
p/sec/cm²/sr

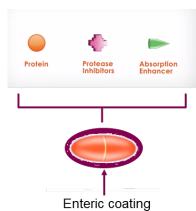
Precision Nanosystems website


A single injection of GenVoy-ILM Luciferase mRNA-LNP was administered to mice via the tail vein at an RNA dose of 1 mg/mL. Luciferase expression was measured 6-hours post-mRNA-LNP administration.

Garcia-Pinel B, Porras-Alcala C, Ortega-Rodríguez A, et al. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. *Nanomaterials (Basel)*. 2019;9(4):638. Published 2019 Apr 19. doi:10.3390/nano

SLNP manufacturing process

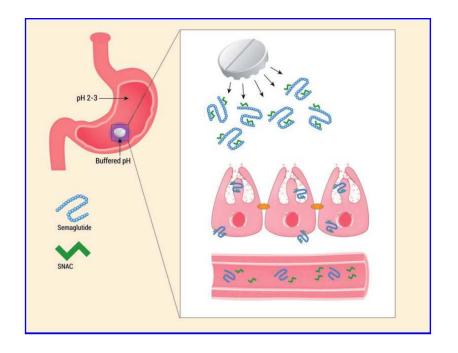


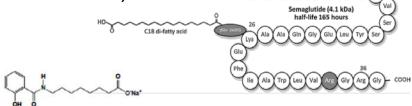


Oral delivery of peptides and proteins, biologics

Miriam Kidron, http://www.oramed.com/ https://www.youtube.com/watch?v=p3LOiZsSSOU

Challenge	Peptide modification/Formulation
Stomach: Increase stability	D-amino acids, lipid particles, PEG
Small intestine: Increased stability	Cyclization, PEG, lipidization, d-amino acid, polymer matrices, nanoparticles. N-acetylation
Enzyme inhibitors	Soybean trypsin inhibitor, aprotinin, bacitracin, puromycine
Absorption enhancers	Chitosan, faty acids, lectines, liposomes, emulsions, muchoadhesive particles, lipid particles
Circulation Increased stability	PEG. Hyper glycosilation, liposomes, nanoparticles


Oral delivery of protein and peptides: Current clinical trials


	Product	Active ingredient	Formulation	Indication	
Marketed	Neoral	Cyclosporine	SEDDS	Transplant rejection	
Approved	Rybelsus	Semaglutide	Eligen SNAC	T2DM	
Phase 1	ORMD-0901	Exenatide	Soft gelatine capsule enteric coating	T2DM	Israel
Phase 2	ORMD-0801	Insulin	Soft gelatine capsule enteric coating	T2DM	NCT03467932
Phase 2	Ovarest	Leuprolide	Peptelligence	Endometriosis	NCT02807363
Phase 2	CR845	Difelikefalin	Peptelligence	CKD, pruritis	NCT03617536
Phase 3	Mycapssa	Octreotide	Transient permeability enhancer	Acromegaly	NCT0352353
Phase 3	SMC021	Salmon Calcitonin	Elgen 5-CNAC	Osteoarthritis	NCT00704847
Phase 3	TBRIA	Salmon Calcitonin	Peptelligence	Postmenopausal osteoporosis	NCT02807363

First approved GLP-1 oral dosage form

Rybelsus (semaglutide complexed with SNAC)

Semaglutide

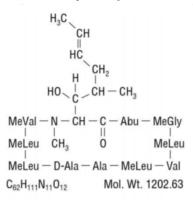
SNAC: sodium N-[8-(2-hydroxybenzoyl)amino] caprylate

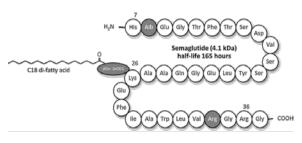
Table 1. Pharmacokinetics of Oral and Subcutaneous Semaglutide 11,12,16

Parameter	Oral semaglutide	Subcutaneous semaglutide
AUC (nmol×h/L)	284	3026
Cmax (nM)	15	10
Tmax (h)	1	66
$T_{1/2}(h)$	152	168

AUC, area under the curve; Cmax, maximum plasma concentration; Tmax, time to reach Cmax; T_{1/2}, terminal half-life.

10 mg semaglutide/SNAC 300 mg


0.5-1 mg semaglutide subcutaneous (Ozempic)

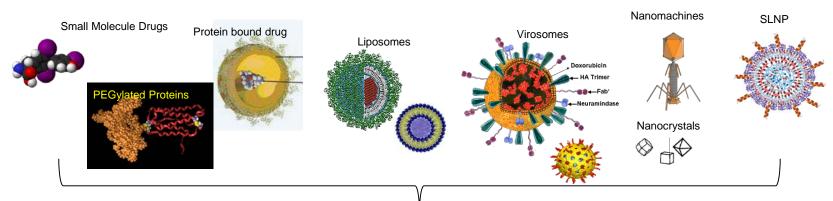

Approved peptide oral dosage forms

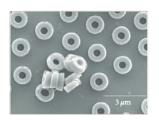
Corn oil-mono-ditriglycerides, polyoxyl 40 hydrogenated castor oil NF, DL-atocopherol USP, gelatin NF, glycerol, iron oxide black, propylene glycol USP, titanium dioxide USP, carmine, and other ingredients

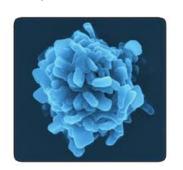
Cyclosporine

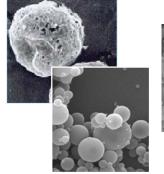
Semaglutide

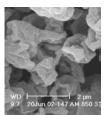
magnesium stearate, microcrystalline cellulose, povidone and salcaprozate sodium (SNAC).


Each tablet contains 3 mg, 7 mg or 14 mg of semaglutide




Drug delivery via microparticles contribute to an innovative pipeline


Molded microparticles



Crystalline protein carriers

Spray dried microparticles

Outlook

- Many innovative products for the delivery of proteins and peptides in the pipeline
 - Pulmonary delivery for topical applications
 - Nasal delivery for local as well as applications targeting the brain
 - Oral delivery of proteins and peptides is a reality
- Well established processes such as freeze drying and spray drying enable manufacture of specialty formulations
- Microparticle molding may emerge as a platform process
- Lipid based drug delivery systems require customized processes which are emerging as the need arises

Thank you for your attention

