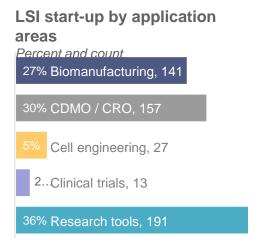
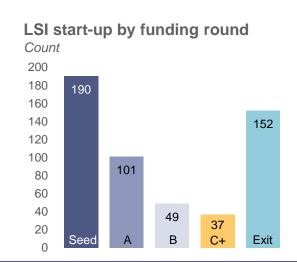


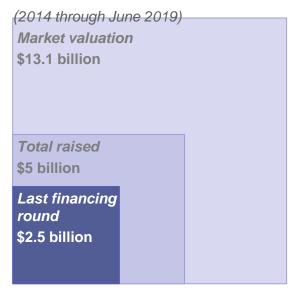
Perspectives from an Investor in Start-Up Life Science Industrials that Provide Fundamental Technologies and Services to Biopharma

Gustavo Mahler, PhD

3 June 2020


Start-ups in Life Science Industrials category


- Start-ups in Life Science industrials (LSI) develop critical technologies, tools and services for biopharma and R&D
- These companies are the drivers of innovation in the space by developing tools and services that increase yields, productivity and reduce costs of discovery, development and manufacturing of biotherapeutics
- LSI start-ups can be further categorized across these application areas
 - Biomanufacturing
 - CDMO/CRO services
 - Cell engineering
 - Clinical Trial applications
 - Research tools
 - Software/Al applications
- Products, consumables and services in this field may be applied to existing biologics, vaccines, biosimilars and/or novel therapeutics including cell and gene therapies


Large market: 500+ early and late stage LSI start-ups

- 529 LSI start-ups raised \$5 billion in last 5 years
 - Over \$2.5 billion deployed in last financing rounds alone
- Using median ownership assumptions, this values the sector at \$13.1 billion

LSI start-up funding and market valuation

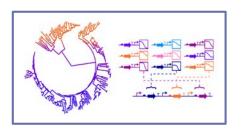
Key acquirers support \$86 billion + in LSI M&A activity

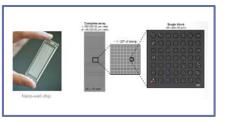
- From 2015 to 2020, 36 key acquirers led 138 M&A deals valued at over \$86 billion on \$3.2 billion in invested capital
 - Acquirers are highly active with 259 M&A deals valued at \$133 billion on \$5.8 billion in invested capital
 - Transaction count steady between 20-33 deals annually
- Major players drive majority of acquisition value
 - 10 deals over \$1 billion represent \$73 billion of M&A activity

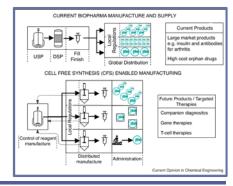
Most active acquirers

(2015 through March 2020)

M&A activity in \$ millions (2015 through March 2020)

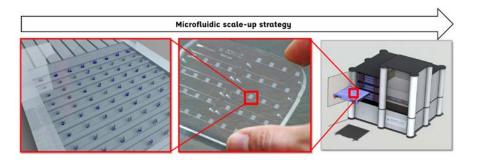






Cell Line Development

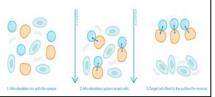
- Start-ups innovating in the cell line development field are focused mainly in:
 - Alternative high yield systems (yeast and fungal based)
 - Synthetic biology systems: alternate, highly optimized expression systems working based on permutations of existing genetic elements, both natural occurring as well as synthetic
 - High throughput selection of high producing cells, including single cell selection and testing systems
- As alternative, several start-ups are working on cell-free systems. A cell-free substrate generated based on specific proprietary strains enable high volume, fast protein manufacturing on demand.



Cell Culture and Fermentation

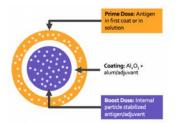
As significant innovation has already emerged from wide use of single use bioreactors, this area is seeing some refinement through new technologies:

- High concentration inoculum storage for quick cell culture start
- Inoculum process intensification to increase facility utilization
- Process intensification using retention devices in multiple configurations
- Microbioreactors using microfluidics with highly controlled environments


Harvesting and Purification

Downstream processing is currently one of the areas with major challenges due to the increase in titers in upstream processing:

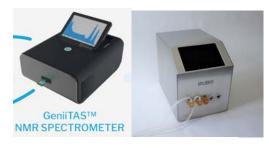
- Alternate cell separation methods based on physical principles (flotation, sonic waves, flocculation)
- Continuous chromatography, including multicolumn chromatography
- Membrane based chromatography, including Protein A capabilities
- Single use concentration equipment



Formulation, Fill and Finish and Storage

Alternate formulation and API fill/storage methodologies are being developed to achieve high concentrations, temperature stability and better protect API after formulation:

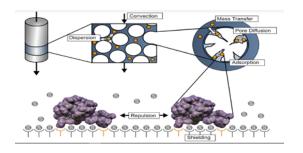
- Thermostable formulations for therapeutics and vaccines, including "boost" formulations
- High protein concentration formulations
- Closed systems for API fill, freeze, storage and transportation
- Small batch fill finish with high automation



Analytics and In-Process Control

Multiple options for in-process control technologies and highthroughput analytical technologies are being developed:

- In line metabolite cell culture monitoring using new principles (AA, NMR, enzymatic amperometry methods)
- Offline metabolite analysis using AA and NIR
- Fast separation to replace HPLC and UPLC methods
- Cell based in vivo analysis using microfluidic devices



Software and Al

New Software applications are being developed to better design and control processes:

- Entire process modeling and optimization using AI, including applications for process characterization and validation
- Machine learning as a tool to optimize processes
- Process optimization based on metabolic cell modeling

In Summary

- Innovative Start-up companies are bringing new, challenging technologies to the market in all aspects of biotherapeutic manufacturing
- Funding partners that understand the market dynamics and how to position and commercialize new products are key to accelerate innovation in bioprocessing
- As technologies are adopted and become mainstream, companies are acquired by larger players, consolidating the market and becoming reliable suppliers of new inventions
- Cycles for these products require several years, and will probably be adopted first in biotherapeutics in clinical development

Thank you.

For more information please visit us at www.dynamk.vc

Presented by:
Gustavo Mahler, Ph.D.
Managing Director
gmahler@dynamk.vc

