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Regional Modeling of Wildland Fires

- Simulate where the smoke emissions go
- Predict plume chemistry and downwind chemical composition, air quality

° Forecast and hindsight applications
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Christine Wiedinmyer, 21 October 2020, ~4pm MT



Experimental forecast, use at your own risk.

Forecast
https://hwp-viz.gsd.esrl.noaa.gov/smokefindex.html
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Annual PM, c from CMAQ (12km)

a, ¢ — Only fire emissions

b, d — All emission sources

[Koman et al, Mapping Modeled exposure
of wildland fire smoke for human health
studies in California, Atmosphere, 2019]
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Surface observations (a) and Modeled (b) PM, : in San Francisco Bay area on 14 November 2018 during Camp fire
[Rooney et al, Air quality impact of the Northern California Camp Fire of November 2018, Atmos. Chem & Physics, 2020]
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Modeling Wildland Fires: Emissions

Emission,= f(ef; Biomass Burned)

Emission Factor Biomass Burned
* Vegetation
o Type
o Condition
o Density
o Loading
e Fire
o Intensity
o0 Duration

* Vegetation
o Type
o Condition
* Fire
o Intensity
o Stage
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https://earthobservatory.nasa.gov/images/144225/camp-fire-rages-in-california

Emissions from urban fires

Emission Factors— What is released? How much?

Activity — What is burning? When? How much?




Emissions from Urban Fires

’ Material Burned

WHAT IS BURNED?

WHAT IS EMITTED?

* Building Materials

* Criteria Pollutants * Cars
(PM, CO, NO2, S02) * Electrical
* Metals : PVC
: Carpet
* Organic Compounds * Furnishings
* Toxics * Electronics
* Reactive compounds l
* Chlorinated compounds * How many or How much

* Fraction of material burned




Particulate Matter Emission Factors

Vehicle Tires
Vehicle Full

House Furnishings
Electronics

Vehicle Components

House Wood N

*
Western Wildfire I

* EF from Western Evergreen Forest (Prichard et al, 2020)

Emission Factors from urban materials compiled by Amara Holder, US EPA
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The emission factors of the 20 most abundant trace
gases (except CO2, CO and CH4) in three western
wildfires (Liu et al, JGR-Atm, 2017)

The emission factors of the 20 most abundant trace gases
(except CO2, CO) for total house burning
(Total PCDF = Polychlorinated dibenzodioxins, dibenzofurans)

Emission Factors from urban materials compiled by A. Holder, US EPA
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Emission Factor (g kg )
The emission factors of the 20 most abundant trace
gases (except CO2, CO and CH4) in three western
wildfires (Liu et al, JGR-Atm, 2017)

The emission factors of the 19 most abundant trace gases
(except CO2, CO) for Tire burning (SO, EF =24 g/kg)

Emission Factors from urban materials compiled by A. Holder, US EPA



Emissions from Urban Fires

Emission, = EF, * Material Burned

WHAT IS BURNED?

WHAT IS EMITTED?

* Building Materials

* Criteria Pollutants * Cars
(PM, CO, NO2, S02) * Electrical
* Metals *PVC
* - * Carpet
Organic Compounds * Furnishings
* Toxics * Electronics
* Reactive compounds l
* Chlorinated compounds * How many or How much

* Fraction of material burned




Emission Estimates

Comparison of wildland fire and urban emissions from Camp Fire (November 2018)

Emissions (tons)

10000

| | | ‘ |

Toluene Benzene HCI

m Wildfire WUl

Active fire

Wildland fire emissions estimates
from FINNv2.2 (MODIS+VIIRS)

Urban emission estimates
developed by A. Holder (US EPA)
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Regional chemical transport modeling

What is the impact of
different sources on
chemistry, air quality,
exposures?

https:// hwp:-;y_i_;l.:gsd.esrl._noaa==gfo=v=/smokgﬁndex."h'_c_r'h_:l‘.”
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100’s of NMOCs measured from Biomass
Burning experiments

Unknown/ double counting

Other

Halogen- containing
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Simulating Chemistry

Multiple mechanisms are available to simulate chemistry in chemical transport models

For example: SAPRC18

e 11 inorganic species (e.g., NO, NO,, O,)

e 42 explicit organic species (e.g., benzene, isoprene, methanol)

e 65 lumped organic surrogates (e.g., lumped alkanes, alkenes, aromatics of different
reactivity)

e 8 non-reactive species (e.g., CO,)

e Furans (Jiang et al., 2020)

(SAPRC18, Carter, W. P. L., 2020, https://intra.engr.ucr.edu/~carter/SAPRC/18/)



https://intra.engr.ucr.edu/%7Ecarter/SAPRC/18/

Modeling Hazardous Air Pollutants

Gas-Phase Hazardous Air Pollutants Represented in the Current CMAQ Model.

HAP Name

HAP Name

acetaldehyde - total and emitted

ethylene oxide

acetonitrile

formaldehyde - total and emitted

Aerosol-Phase Hazardous Air Pollutants
Represented in the Current CMAQ Model.

acrolein - total and emitted

Hexamethylene 1-6-diisocyanate

HAP name

acrylic acid

n-hexane

Arsenic - fine and coarse modes

acrylonitrile (propenenitrile)

Hydrazine

Beryllium - fine and coarse modes

benzene

hydrochloric acid

Cadmium - fine and coarse modes

1,3-butadiene

Mercury - elemental and gas

carbon tetrachloride

methanol

Chromium 3 - fine and coarse modes

carbonyl sulfide

methyl chloride

Chromium 6 - fine and coarse modes

chlorine

Maleic anhydride

Diesel PM elemental carbon - fine modes

chloroethene (vinyl chloride)

naphthalene

Diesel PM organic carbon - fine modes

chloroform

quinoline

Diesel PM sulfate - accumulation mode

chloroprene

styrene (ethenylbenzene)

Diesel PM nitrate - accumulation mode

1,2-dibromoethane

1,1,2,2-tetrachloroethane

Diesel PM other components - fine modes

p-dichlorobenzene

tetrachloroethylene (perchloroethylene)

Diesel PM - coarse mode

Lead - fine and coarse modes

1,2-dichloroethane

toluene

Manganese - fin and coarse modes

dichloromethane

2,4-Toluene Diisocyanate

Mercury - fine and coarse modes

1,2-dichloropropane

trichloroethylene

1,3-dichloropropene

Triethylamine

ethylbenzene

xylene - sum of 0-, m- and p- isomers

Nickel - fine and coarse modes

https://www.epa.gov/cmaqg/modeling-toxic-air-pollutants-cmaq



Regional modeling of wildland and WUI fires

How to get the best estimates of emissions?
* Activity data needed!
* Timing of emissions is important to downwind estimates
* What is emitted?

Are we simulating what is important for fires in the WUI? Lo

* What chemical mechanisms should be used? |
* What pollutants and chemistries are missing? ?f:::;;(é;?:::;‘;232:;‘.?5::;;‘::‘;{;2};5{2,?;“;1:'batt'e'tfs'fﬁ“e'
* Are the compounds of interest reactive or inert? HiC,

When and where are urban fires important?
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