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Outline

* Fire retardants are added to combustible materials to pass regulatory tests

* Fire retardants are not all equal!
— Gas phase flame retardants have to be volatile or release volatiles to be effective
— Char formers tend not to be volatile and reduce the amount of volatile formation
— Mineral fillers replace up to 70% of combustible material with inorganic hydroxides and carbonates

e Gas phase flame retardants increase the smoke toxicity in three ways:

— Increasing asphyxiant yields CO and HCN (acute toxicity)
— Increasing organoirritant and carcinogen yields (acrolein, PAH etc)
— Increasing smoke and particulate yields (atmospheric particulate deaths)

« All commercially available gas phase flame retardant contain bromine, chlorine,
phosphorus or a combination

Most of the concerns over flame retardant toxicity relate to long term exposure to certain

undecomposed flame retardant molecules.
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World consumption of flame retardants by type, 2019
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Drivers in Fire Retardant Development

Overcome by gas, smoke or toxic fumes
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Physical fire retardant action

By cooling from endothermic processes such as
breakdown of additives.

By formation of a protective layer.

* By dilution from additives which evolve inert gases on
decomposition
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Aluminium hydroxide (ATH)

180-200°C
2 Al(OH); (s) = ALO4(s) + 3 H,0(g)
AH = +1.3kJ gt
 The same amount of energy would heat 1 gram of polythene
~600°C.

* |n addition, aluminium hydroxide is a good conductor of heat,
reducing the local hot spots, which are responsible for starting
fires.

e Aluminium hydroxide used at about 60% by weight, accounts for
40 % of all the fire retardant additives used.
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Alternative Mineral Fillers Fire Retardants

Aluminium hydroxide  180-200°C

2 AI(OH); — ALLO; + 3 H,0 AH = +1.30kJ g!
Boehmite 340-350°C

AIO(OH) — ALO; +3H,0 AH = +0.56 kJ g
Magnesium hydroxide 300-320°C

2 Mg(OH), — MgO + H,O AH = +1.45kJ g!
Hydromagnesite 220-240°C

Mg:(CO,),(OH),-4H,0 — 5MgO + 4CO, + 5H,0 AH = +1.30kJ g
Huntite 400-600°C

Mg;Ca(CO;), — 3MgO + CaO + 4CO, AH = +0.98 kJ gt
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Metal Hydroxides and Carbonates

4 modes of action

Fuel +
Polymer + M(OH), ~ =wmmmmp  Polymer + M(OH), w=mmmmp  Polymer + M(OH)_
M(OH)._ absorbs Polymer decomposes to fuel Layer of MO on
heat heat surface:
M(OH), - MO +H,0(g) e Radiation shield
e Heat absorbed e Continuous
(endothermic dehydration) barrier to fuel
e Water released and oxygen

Il TR, Witkowski A, Hollingbery L., Fire retardant action of mineral fillers, Polymer Degradation and Stability (2011), doi: 10.1016/|.polymdegradstab.2011.05.
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Metal Hydroxides and Carbonates

4 modes of action
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Chemical fire retardant action

 Reaction in the gas phase. Free radical gas phase
reactions disrupted by the flame retardant.

 Reaction in the solid phase.
— Promoting or inhibiting depolymerisation.
— Char Formation e.g. by promoting cyclization and cross-linking.
— Intumescence (swelling to form an insulating layer).
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Key applications requiring gas phase flame

__ retardants
o Usually the most difficult materials to fire retard!

« Generally, low thermal inertia (kpc) materials, with high surface area!
— eg; Foams, fibres and films

« Particularly, textiles, flexible polyurethane foam (furnishings), polystyrene
and rigid polyurethane foam insulation.
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Free Radical Reactions in a
Flame

This Is the H + H,0—>H, + OH
main heat H + O, —OH- + O

release step .O- + H, »>OH- + H.

LCO + OH —»CO, + H:

HCHO + OH- — HCO- + H,0
HCO- + OH-—>CO + H,0
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Presenter
Presentation Notes
 
The picture for methane combustion, although simplified, looks fairly complex and we might imagine that the oxidation of higher hydrocarbons and mixtures of hydrocarbons (petrol is complex mix of C5‑C8 hydrocarbons) at high temperatures would be even worse! 
 
Fortunately, by kinetic modelling of the reaction, the influence of varying a single rate coefficient by a factor of five on the calculated flame velocity of a methane/air mixture has been used to identify the important reactions.  This technique, known as "sensitivity analysis" shows that only a few reactions control the overall rate of reaction and that none of these reactions are specific to the fuel used.  The key reactions are shown below.
 
H· + O2  OH· + O··
OH· + CO·    H· + CO2
HCO·    H· + CO
CH3 + H + M    CH4 + M.
 
The reaction of oxygen atoms with the various compounds of the degrading fuel causes chain branching but is relatively unimportant. The major degradation pathways, reaction with H· and OH· radicals, are chain propagating so that the radical concentration remains constant. The major chain branching step is the first reaction with the H atoms being generated from decomposition of HCO· (in the third reaction). This chain branching reaction along with chain termination reactions such as the last reaction control the overall radical concentration and hence the rate of reaction. The second reaction is of importance because it is a major mechanism for generating H atoms and forms a significant component of the flame exothermicity. This shows the importance of the hydrogen/oxygen system and why it has received so much study. Many of its elementary reactions are also the crucial steps in all hydrocarbon oxidation.
 



Halogen Flame Retardant Action

HX, either HCI or HBr, is released from decomposing flame retardant

HX react with high-energy free radicals:
HX + H- —> H2 + X-

HX + OH- — H,0 + X-

The lower energy of the halogen free radical brings the concentration of
active species below a critical level.

This blocks the flame reactions, and preventing the major heat release step:
CO + OH- »CO, + H-
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Flame Inhibition by phosphorus compounds

PO- Is the main radical scavenger
H-+PO-+M > HPO- + M
HPO- + H-> H, + PO
HPO- + -OH 2> PO- + H,

PO + :OH > HPO- + -O-
PO- +H- > HPO: +-O -
PO- +R-H > HPO: + R.
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Comparison of smoke toxicity for antimony-
bromine and phosphorus flame retardants in n

ECO mHCN @HBr mNO2 mHypoxia
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0.54|0.56|0.47 |0.54 0.53|0.58 |0.49 | 0.60|0.45|0.49| 0.49|0.51(0.45|0.50|0.49|0.55| 0.60|0.98 |0.67 |1.00| 0.47 | 0.66 | 0.49 | 0.66
gas phase flame retardants on fire effluent 650°C | 825°C | B650°C | 825°C | B50°C | 825°C | 650°C | 825°C | 650°C | 825°C | B50°C | 825°C
toxicity, Polymer Degradation and Stability 106, PAG PA6.6 PA 6/AIPIM PA 6.6/AIPIM PA 6/BrsSb PA 6.6 Brsb
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Formation of
Products of
Incomplete
Combustion
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PAH and Soot
Formation

Flouranthene

Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene
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Problems with Halogenated Flame
Retardantst

« Easily added to polymers, but easily lost (leaching, evaporation
etc).

o Extremely stable, non-polar molecules (= Persistent and
Bioaccumulative)*

 Endocrine disruptors (= Toxic)**

e Reduce heat release, but increase smoke, tar and CO and HCN
yields.

e Soot increases radiant component of heat transfer — so potentially
worse in real fires than fire tests?

« Potential dioxin formation (PBDD/F) in fires, or on incineration or
reprocessing

tDiGangi J, Blum A, Bergman A, de Wit CA, Lucas D, et al. 2010 San Antonio Statement on Brominated and Chlorinated Flame Retardants.
Environ Health Perspect. 118(12).

*C. A. de Wit, An overview of brominated flame retardants in the environment, Chemosphere, 2002, 46, 583.

**Shaw SD, et al, Halogenated Flame Retardants: Do the Fire Safety Benefits Justify the Risks? Reviews on Environmental Health 25(4) 261-305
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Problems with Phosphorus Flame Retardants

e Suspected toxicity, carcinogenicity and reproductive toxicity

* Increased yields of small molecule toxicants

— CO (LC;, = 3500 ppm),

— HCN (LCgy = 165 ppm),

— and possibly P,O¢ (LC., = 3500 ppm, vapourises at 600°C)
* Potential neurotoxicity

— Trimethylolpropane phosphate (TMPP)*

— Tri o-cresyl phosphate (long-term neurotoxicity)**

Prof T Richard Hull, June 8t 2021

University of

Centre for Fire and Hazards Science

Ce nt ra I La n ca S h i re School of Natural Sciences



Trimethylol propane phosphate, and other bicyclic
phosphate esters

Trimethylol propane + Phosphate FR ->

TMPP formed during burning of PU foam [kiiss
(polyol used to make PUF)

LDg,/mg/kg 32 1.0 0.18 1.5 >500
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Cross-Linking and Char Formation

The ultimate FR mechanism — turning
polymer into protective barrier!

Cross-linked polymers produce less volatiles and
so more char - provided cross-linkages and
polymer chains are resistant to thermal
decomposition.
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Formation of Char

Polymer passes through several steps

Steps in formation of char: ! ! ‘ " . l |
e cross-linking,

aromatisation,
fusion of aromatics,

turbostratic char formation, and
graphitisaﬁon_ Turbostratic structure Graphite structure

polymer
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Intumescence

* Intumescent systems, on heating, give a swollen
multicellular char, more capable of protecting the
underlying material from the action of the flame.

 Polymers of greatest interest are polyethylene (PE),
polypropylene (PP), and polystyrene (PS) — difficult to
fire retard because they volatilise completely.

Polymer —

. . Prof T Richard Hull, June 8t 2021
University of

Centre for Fire and Hazards Science

Ce nt ra I La n ca S h i re School of Natural Sciences




Conclusions

e Fire retardants allow combustible materials to be used In
place of non-combustible ones.

* Gas phase flame retardants increase
— smoke toxicity
— Radiant heat and hence fire spread
— Particulate emissions

* The toxic effects of smoke are seen In
— Acute fire deaths (CO and HCN)
— Firefighter occupational diseases

— Atmospheric particulate deaths (~10% of total*)

'sson, B., Simonson, M. Fire Emissions into the Atmosphere. Fire Technology 34, 266—279 (1998). https://doi.org/10.1023/A:101535002.
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