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Exploring the complexity of gas- and particle-phase organic
chemistry, and indoor infiltration rates, when wildfire smoke
arrives in hlghly populated regions of California
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Frequency and severity of smoke episodes with PM, .
exceedances has increased sharply in California
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PM, - in California and across the US has been declining for several decades
PM, - in many regions of California is no longer declining after 2015 due to wildfires

Figures by Y. Liang, Data from CARB and EPA via O’Dell et al. ES&T 2019



Wildfire smoke is harmful to people’s health

« Main Wildfire Pollutants: Organic gases & particles

° EffeCtS Of _exposure: Adverse respiratory Outcomes —) Out-of-Hospital Cardiac Arrests and Wildfire-Related Particulate
(exacerbation of asthma and chronic obstructive Matter During 2015-2017 California Wildfires

Caitlin G. Jones, MS; Ana G. Rappold, PhD; Jason Vargo, PhD; Wayne E. Cascio, MD; Martin Kharrazi, PhD; Bryan McNally, MD;

pulmonary disease, see Reid et al. EHP 2016)
» Enhanced toxicity: PM, c from wildfires is more — , _
' T Health risk of gas-phase
harmful than equal doses of non-wildfire PM, .. HAPS in smoke A——
(Wesgesser et al. EHP 2009, Aguilera et al. Nat. PSR . Polfaoss (ARS]

Comm. 2021) — A ks oke _

 Airborne chemistry: Some wildfire VOCs are
hazardous air pollutants, VOCs in smoke may
undergo photooxidation, producing harmful
oxygenated VOCs, O, and PM

O'Dell et al. ES&T 2020


Presenter
Presentation Notes
O’Dell et al.: Some wildfire VOCs are hazardous air pollutants, VOCs in smoke may undergo photooxidation, producing harmful oxygenated VOCs, O3 and SOA.



Biomass burning emissions are chemically complex!

>3000 organic chemicals observed in PM, Fire Lab study EMISSIon Factors span 3+ orders of magnitude

(a) Unknown mass fraction

(b) Total classified mass fractions
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B
100’s of VOCs emitted with wide
range of structures & functional

groups

VOC emission composition
changes with pyrolysis temperature
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Presentation Notes
Most of the observed variability between VOC emissions from fuel types and over the course of a fire can be explained using just two emission profiles: (i) a high-temperature pyrolysis profile and (ii) a low-temperature pyrolysis profile. 
MCE, which parameterizes flaming and smoldering combustion, is not appropriate to estimate the high- and low-temperature pyrolysis VOC emissions. 


Oct 2017 Northern California Wildfires

 Fires at Wildland Urban Interface (WUI) triggered by power
line/electrical failures, resulting from strong “Diablo” winds

e On the “deadliest & most destructive California wildfires” list

e When fires began we turned on all the instruments in my lab
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Most organic chemicals in biomass burning PM, . arriving in Berkeley are
“novel” and not identified by traditional methods
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Time 2017
 Quantified 570+ organic compounds accounting for ~20% of OC (4 hr filter samples)
 Sugars & sugar derivatives are the dominant identified groups of compounds
o Level of PAHs is below 0.3% of total quantified organic PM, - (up to 5% in fresh smoke)

Liang et al. ACP 2021
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Presentation Notes
Health implications of inhaling many of these compounds are still lacking.

Which suggests most PAHs were oxidized before reaching Berkeley

there is not enough consistent evidence of specific sources or chemical components of PM2.5 that are more toxic/health harming


Source apportionment using measured Comparison of average
markers can differentiate types of fuels emission factors (EFs)
ourned and other contributing PM, s sources  f.5m non-biomass fuels
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Although fires were at WUI, we were not able to find a factor or representative compounds
Indicative of “non-biomass fuels” for smoke in Berkeley.

Liang et al. ACP 2021 Jaffe et al. Air & Waste Mngmnt 2020
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Mass concentration of carbon [ug/m]

VOCs dominate the total o

B Org carbon in particle phase
E Org carbon in gas phase
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Mass of organic carbon in VOCs accounts for 70%-75%
of total organic carbon in smoke plume periods
(VOCs measured by PTR-TOF-MS)

180

160

140

120

100

80

60

40

20

nserved organic carbon

- [ sulfur-containing

B I Nonaromatic N-containing [|

[ Nonaromatic Oxygenated

| | Aromatic N-containing
I Aliphatic Hydrocarbons

B Furanoids
[ IBenzenoids
B Terpenes

Oct 11

Oct12  Oct13  Oct14  Oct15  Oct16  Oct17  Oct18  Oct19  Oct20
| ] time | || 2017

plume periods

VOCs were dominated by oxygenated compounds

Liang et al. in prep
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Presentation Notes
Our measurement at UC Berkeley campus shows 
oxygenated compounds were always the major compounds in terms of mixing ratio. But when plumes came, we have 10-20% furanoids and benzenoids.


Daytime oxidation produced many secondary oxygenated VOCs
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Presentation Notes
Here we compare the enhancement ratios of VOCs with respect to CH3CN in a relatively fresh nighttime plume and an aged daytime plume. CH3CN is a very stable biomass burning tracer. The nighttime plume traveled around 2-3 hours before getting measured. The daytime plume traveled 7-8 hours. The compounds having higher enhancement ratios at daytime include formaldehyde, acetic acids, maleic anhydride, which means they were secondary. The enhancement ratio of maleic anhydride in the daytime plume is more than 20 times higher than in the nighttime plume. Primary BB VOCs like furans, furfurals and guaiacols have higher enhancement ratios in the nighttime plume, but they were almost depleted in the daytime plume.



Primary VOCs can be differentiated from secondary VOCs by
correlation with furan (primary) and maleic anhydride (secondary)

R, with maleic anhydride
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PM OC evaporation = Secondary PM OC formation

No net growth of PM OC as smoke ages,

but substantial change in chemical composition does occur
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Presenter
Presentation Notes
To investigate whether BBOA particle mass increased or decreased during transport and aging, we plotted particle phase OC with acetonitrile. The figure on the left shows that particle OC is linearly correlated with acetonitrile. The relationship was not affected by the fraction of the BB SOA factor in total quantified OA or day/night difference.  So we can infer that evaporation and SOA formation was balanced in terms of OC. Since aged BBOA has a higher O/C ratio, we expect a small increase of particle mass. 

We also calculated the ΔPM2.5/ΔCO ratio at multiple BAAQMD sites during the three major plumes on Oct 11, 12 and 17. The levels of PM2.5 at the sites considered here reached their peaks 0-5 hours after the Napa site. The ΔPM2.5/ΔCO ratios in each fire plume intercepted at different sites have a narrow distribution, especially in the Oct 11 noon time plume, which further shows the net increase of PM2.5 mass in aging was minimal.


Exposure to wildfire smoke dominantly occurs indoors

Time budget for Californians o peqple spend ~90% of our times indoors

B Indoors at home (62%) . . o e
B Indoors notathome (25%)  © EPA recommends staying indoors during wildfires

7 Enclosed transit (7%) Human behavior (e.g., window shutting, use of
Outdoors (5%) ﬂ particle filtration devices) may be responsive to
Outdoor transit (1%) knowledge about levels of wildfire smoke PM

» Assessments of wildfire exposure typically rely on outdoor
concentration measured at EPA stations

 Understanding the indoor penetration and persistence of smoke during
wildfires is very important

Jenkins et al. Atmos. Environ. 1992
Klepeis et al. J. Expos. Analysis Environ. Epidemiol. 2001



What happens when outdoor smoke comes indoors?
Indoor air # outdoor air

« Buildings are partially protective

(through filtration and deposition) Partices  + ®
o,g -

» PM size distribution is altered © oo,

(more efficient reduction of ultrafine and coarse particles) o

» Chemical composition shifts M
(changes equilibrium partitioning for semi-volatile species)

m || .-
Outdoor Air Indoor Air

* Indoor semi-volatile organics partition to smoke particles

* Indoor surface uptake followed by slow release of
gaseous species may extend exposure to smoke organics

Goldstein et al. Environmental Science & Technology 2021



2020 Wildfires in California (many at WUI)
caused poor air quality over broad regions
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In 2020, SF Air Basin had the longest (46 days) “Spare the Air” alert in history, with
25 days of PM, - exceeding national 24-hour standard (worst since 1991)

Figures by Y. Liang, Data from MODIS and EPA



Many people view PurpleAir (PA) data to assess air quality during fires
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Number of indoor PA sensors grew rapidly
In direct response to wildfire events

California wildfires > 50,000 acres burned . . .
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Concentration ug m™

Indoor/outdoor PM, . relationship of an example residence
(measured using PA sensors)
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Liang et al. in review



Indoor air quality was affected by wildfire smoke
Buildings were protective (less infiltration on fire days)
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Air-conditioned buildings have lower PM infiltration ratios
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Liang et al. in review



Conclusions

 Despite burning at WUI, no evidence of “non-biomass fuels” in Berkeley 2017 wildfire smoke
 Substantial changes in chemical composition of wildfire smoke occur during transport

« No change in PM OC mass during transport (evaporation = secondary production)

« Infiltration ratios reduced by ~50% (0.4 --> 0.2) during wildfire days, while PM, . ~tripled

 Widely available real-time PM data have potential for educating people and altering behavior



Some Key Knowledge Gaps

« Chemical emission profiles from WUI wildfires are relatively unknown

 Thousands of chemicals are observed in smoke, but health effects of most remain largely uncertain
 Secondary organics are important components of aged smoke, yet remain poorly characterized

* Indoor penetration & persistence of organic chemicals from smoke is poorly understood

 PurpleAir data is widely accessed during wildfire events, but available data is skewed by income
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