Emerging Sensor Technologies to Enhance Understanding of Indoor Air Pollutants

Dr. Andrea Polidori Advanced Monitoring Technologies Manager

South Coast AQMD Diamond Bar, CA

AQSPEC

Air Quality Sensor Performance Evaluation Center

Established in July 2014

Main Goals & Objectives

- Provide guidance & clarity
- Promote successful evolution and use of sensor technology
- Minimize confusion

Sensor Selection Criteria

- Commercially available
- Criteria pollutants & air toxics
- Real- or near-real time, time resolution ≤ 5-min
- Sensitivity at ambient levels
- Continuous operation for two months
- Retrievable data
- Low-cost...?

Phase I: Field Testing

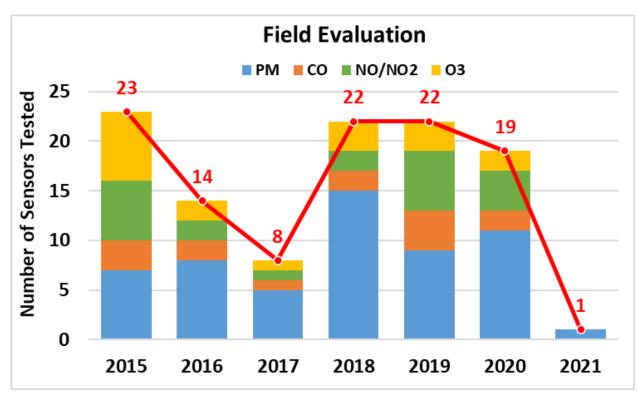
- Sensor tested in triplicates
- Two months deployment
- Comparison with FRM/FEM instruments at a fixed monitoring station

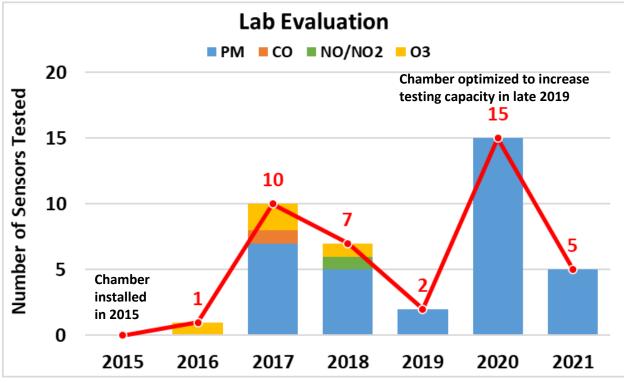
Phase II: Laboratory Testing

- State-of-the-art characterization chamber
- Particle and gas testing
- T and RH controlled conditions

AQ-SPEC Air Quality Sensor Performance Evaluation Center

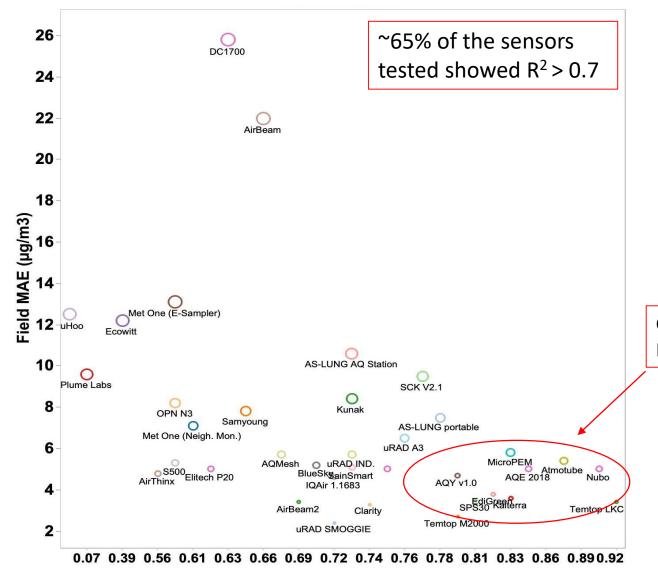
Characteristic	SEnTeC-1	SEnTeC-2		
Test Volume	~1.1 m³	~1.6 m ³		
Temperature Range	-32 °C to +177 °C	-70 °C to +180 °C		
Humidity Range	10% to 95%	5% to 98%		
Maximum Sensor Testing Capability	3-9 sensors	20+ sensors		
Specialty Tests (wind, vibration, altitude)	No	Yes		
Simultaneous Pollutant Testing	No	Yes		
Automatic Pollutant Stabilization	No	Yes		
FRM/FEM Instrument Cert.	Criteria Gases and PM _{2.5}	Criteria Gases and PM _{2.5} + PM ₁₀		



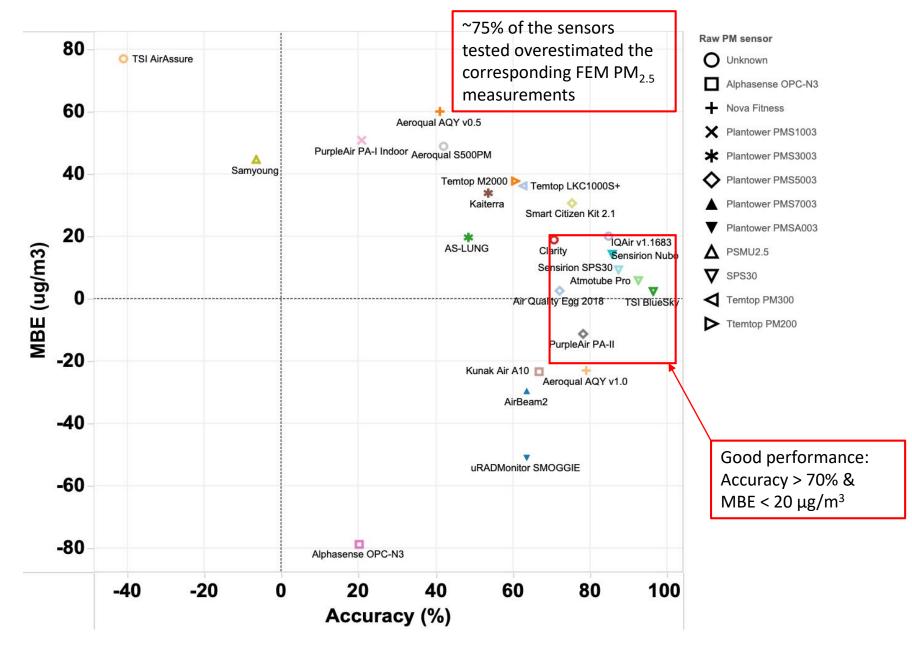

SEnTeC-2 (Sensor Environmental Test Chamber-2)

- Development of sensor performance targets
- Calibration and QA/QC for new Sensor Library program
- Support for mobile testing of sensors and testing under unique conditions

Number of Sensors Tested: PM and Gas Devices


	2015	2016	2017	2018	2019	2020	2021	total
Field	23	14	8	22	22	19	1	109
Lab	0	1	10	7	2	15	5	40
Total	23	15	18	29	24	34	6	149

PM Sensor Summary Table: http://www.aqmd.gov/aq-spec/evaluations/summary-pm Gas Sensor Summary Table: http://www.aqmd.gov/aq-spec/evaluations/summary-gas


PM_{2.5} Sensors Performance: Field Testing

Good performance: $R^2 > 0.75 \& MAE < 5 \mu g/m^3$

R² (Comparison with FEM Instrument)

PM_{2.5} Sensors Performance: Lab Testing

Overall PM Sensors Performance

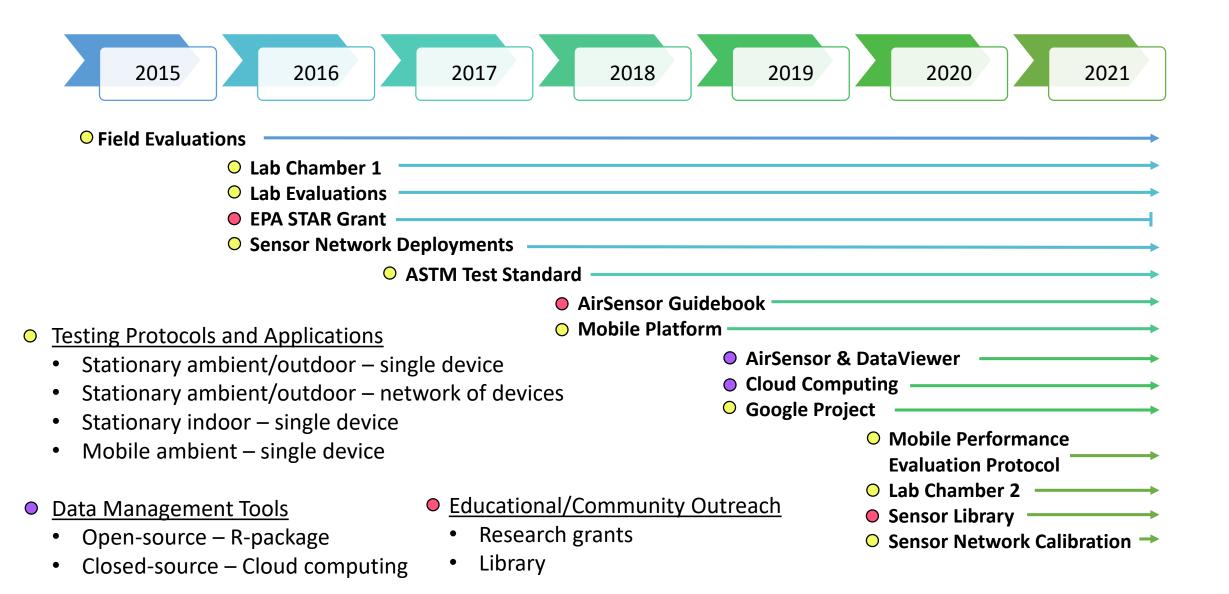
PM Sensors									
Sensor Image	Make (Model)	Est. Cost (USD)	Pollutant(s)	*Field R ²	*Lab R ²	*Field MAE (µg/m³)	*Lab MAE (µg/m³)	Summary Report	
-	Aeroqual (AQY v0.5) Discontinued	\$3,000	PM _{2.5}	0.84 to 0.87	0.99		28.8 to 36.0	PDF (1,178 KB)	
[2]	Aeroqual (AQY v1.0)	\$4,000	PM _{2.5}	0.76 to 0.81	0.99	4.2 to 5.3	5.4 to 15.1	PDF (674 KB)	
	(AQ1 VI.0)		PM ₁₀	0.56 to 0.68		35.4 to 38.8			
3	Aeroqual	\$1,490	PM _{2.5}	0.46 to 0.67	0.99	4.4 to 6.2	11.9 to 32.4	PDF	
0	(S500-PM)	41,130	PM ₁₀	0.15 to 0.24		13.5 to 18.0		(702 KB)	
	AethLabs (microAeth)	\$6,500	BC (Black Carbon)	0.79 to 0.94					
- 1			PM _{1.0}	0.79 to 0.89		4.2 to 5.3			
2	Airly	\$1,000	PM _{2.5}	0.83 to 0.89		4.5 to 5.0			
-			PM ₁₀	0.34 to 0.37		19.3 to 19.7			
600	Air Quality Egg		PM _{1.0}	0.86 to 0.88	0.99	2.1 to 2.3	7.0 to 7.3		
	(2018 Model)	\$249	PM _{2.5}	0.84 to 0.85	0.99	4.4 to 5.3	6.1 to 6.6	PDF (771 KB)	
100			PM ₁₀	0.12 to 0.13	-	16.4 to 19.2		(//1 KB)	
	Air Quality Egg (Version 1)	\$200	PM	~ 0.0					
	Air Quality Egg	-242	PM _{2.5}	0.79 to 0.85					
	(Version 2)	\$240	PM ₁₀	0.31 to 0.40				1	
			PM _{1.0}	0.68 to 0.70		2.4 to 2.5			
	AirThinx	\$1,000	PM _{2.5}	0.54 to 0.57		4.8 to 5.0		1	
	(IAQ)		PM ₁₀	0.03 to 0.05		19.7 to 19.8			
	Airviz Inc. (Speck)	\$150	PM _{2.5}	0.32					
			PM _{1.0}	0.63 to 0.82	0.99			205	
100	Alphasense	\$310	PM _{2.5}	0.65 to 0.80	0.99			PDF (1,291 KB)	
_	(OPC-N2)		PM ₁₀	0.45 to 0.57	0.99			(1,231 KD)	
	Alabacanca	\$338	PM _{1.0}	0.78 to 0.82	0.99	4.4 to 5.0	39.0 to 43.2	PDF	
6	(OPC-N3)		PM _{2.5}	0.52 to 0.67	0.99	7.1 to 9.2	40.3 to 46.9	(757 KB)	
			PM ₁₀	0.45 to 0.52	0.99	18.0 to 24.1	39.2 to 48.0	(/	
1000	Applied Particle Technology (MINIMA)	gy. \$995	PM _{1.0}	0.84 to 0.89		5.0 to 5.6			
181			PM _{2.5}	0.86 to 0.89		5.8 to 6.5			
			PM ₁₀	~0.37		39.4 to 40.3			
-			PM _{1.0}	0.55 to 0.73		2.4 to 3.4			
	AQMesh (v3.0)	\$7,800	PM _{2.5}	0.47 to 0.79		2.7 to 7.5			
			PM ₁₀	0.24 to 0.58		11.4 to 23.1			
-	AS-LUNG (Air Quality Station)	\$2,000	PM _{1.0}	0.42 to 0.88		3.2 to 7.3			
			PM _{2.5}	0.59 to 0.81		8.0 to 12.1			
			PM ₁₀	0.15 to 0.23		18.6 to 21.2			
- OL	AS-LUNG (Portable)	\$1,000	PM _{1.0}	0.86	0.99	3.2 to 4.3	2.6 to 3.4	PDF	
(inc.			PM _{2.5}	0.78	0.99	6.8 to 8.2	12.8 to 13.5	(875 KB)	
			PM ₁₀		-	18.9 to 21.6			
13	Atmotube (Pro)	\$189	PM _{1.0}	0.91 to 0.93	0.99	3.6 to 4.6	1.9 to 6.4	PDF (765 KB)	
			PM _{2.5}	0.88	0.99	4.9 to 5.9	2.9 to 3.8		
	()		PM ₁₀	0.22	-	20.9 to 22.9	-		

Most PM sensors showed:

- Minimal down time
- Moderate intra-model variability
- Strong correlation (R²) with EPA approved instruments (e.g., FEM)

However...

- Sensor "calibration" is needed in most cases
- Very small particles (e.g. < 0.5 µm) are not detected
- Bias in algorithms used to convert particle counts to particle mass


Overall Gas Sensors Performance

Gas-Phase Sensors										
Sensor Image	Make (Model)	Est. Cost(USD)	Туре	Meas.	*Field R ²	*Lab R ²	*Field MAE (ppb)	*Lab MAE (ppb)	Summary	
	2B Technologies (POM)	\$4,500	UV absorption (FEM Method)	03	1.00	0.99			PDF (1,295 KB)	
	Aeroqual	<u>al</u> .5) \$3,000	Electrochem	NO ₂	0.77	0.98			PDF (1,158 KB)	
127	(AQY v0.5) Discontinued		Metal Oxide	03	0.95	0.98			PDF (1,163 KB)	
2	Aeroqual		Electrochem	NO ₂	0.60 to 0.77		4.1 to 5.3			
gard	(AQY v1.0)	\$4,000	Metal Oxide	03	0.96 to 0.97		2.4 to 7.3			
9	Aeroqual (S-500)	\$500	Metal Oxide	03	0.85	0.99			PDF (1,197 KB)	
				NO ₂	0.54 to 0.80		42.4 to 48.1			
1	Airly	\$1,000	Electrochem	03	0.90 to 0.94		19.3 to 22.9			
				CO	0.0					
	Air Quality Egg Ver. 1	\$200	Metal Oxide	NO ₂	0.40					
	ver. 1			03	0.85					
	Air Quality Egg	\$240	Electrochem	CO	0.0					
	Ver. 2	\$2.10	Electrochem	NO ₂	0.0					
	Air Quality Egg	\$240	Electrochem	O ₃	0.0 to 0.20					
	Ver. 2	\$240	Electrochem	SO ₂	n/a					
-		\$4,995	Electrochem	CO	0.87 to 0.90		70.0 to 99.8			
709	APIS			NO	0.87 to 0.97		1.3 to 2.6			
2/8				NO ₂	0.30 to 0.44		6.1 to 9.4			
				03	0.73 to 0.83		14.2 to 19.1			
	AQMesh	\$10,000		CO	0.42 to 0.80				-	
Eb.	V4.0		Electrochem	NO	0.0 to 0.44				-	
See	Discontinued			NO ₂	0.0 to 0.46				-	
				O ₃	0.46 to 0.83 0.74 to 0.79		40.2 to 55.0			
- 1		\$7,800		NO	0.007 to 0.01		21.7 to 27.3		-	
1	AOMach			NO ₂	0.21 to 0.35		6.9 to 7.4		-	
	AQMesh V5.1		Electrochem	NO _x	0.01 to 0.02		27.4 to 31.4		-	
1	V3.1			O ₃	0.88 to 0.90		13.5 to 38.3			
				SO ₂	n/a		n/a			
COM.	CairPol Cairsens (CO)	\$1,243		СО	0.93 to 0.94		93.6 to 134.9			
	CairPol Cairsens (NO ₂)	\$1,198	Electrochem	NO ₂	0.0 to 0.12		6.0 to 14.6			
- 4	Igienair	\$3,000	Electrochem	со	0.84 to 0.87		276.0 to 329.6			
III	(Zaack AQI)			NO ₂	0.53 to 0.58		7.2 to 8.0			
				0,	0.0		20.7 to 23.9			
				CO	0.55 to 0.60		38.9 to 42.0			
	Kunak (Air A10)		Electrochem	NO	0.78 to 0.93		1.1 to 1.7			
hot		~\$5,000		NO ₂	0.76 to 0.93		6.6 to 7.4		-	
500							4.8 to 5.9		-	
				03	0.86 to 0.88					
	Magnasci SRL (uRADMonitor	~¢1 300	Flactrocham	СО	0.00 to 0.07		224.9 to 290.7			

Most gaseous sensors showed:

- Acceptable data recovery
- Wide intra-model variability range
- CO; NO; O3 (when measured alone): good correlation with FEMs/FRMs
- O3 + NO2: potential interference
- SO2; H2S; VOC: difficult to measure with available sensors

AQ-SPEC: Continuing & New Projects

ASTM D22.05: Indoor PM_{2.5} Sensors Test Standards

Phase 1

Initial PM_{2.5} Concentration Ramp

Phase 2

T/RH Susceptibility

Phase 3

Coarse PM Interference

Phase 4

Temperature Cycling

Phase 5

Final PM_{2.5} Concentration Ramp (Drift Measure)

Increasing relevance and urgency for indoor air monitoring due to COVID-19; PM_{2.5} may be proxy for indoor area crowding and transmission risk

• Status:

- Testing of 4 sensor model completed
- 8 subcommittee meetings
- First ballot: Received ~150 comments; all resolved except ONE, awaiting resolution!!!

Method Revisions:

- Greater specificity on permissible reference monitors
- Two particle sources used as proxies for indoor inorganic and organic particles (NaCl and PSL)
- Gravimetric PM_{2.5} verification method proposed

ASTM D22.05: Indoor CO₂ Sensors Test Standards

Phase 1

Initial CO₂ Concentration Ramp

Phase 2

T/RH Susceptibility

Phase 3

RH Interference

Phase 4

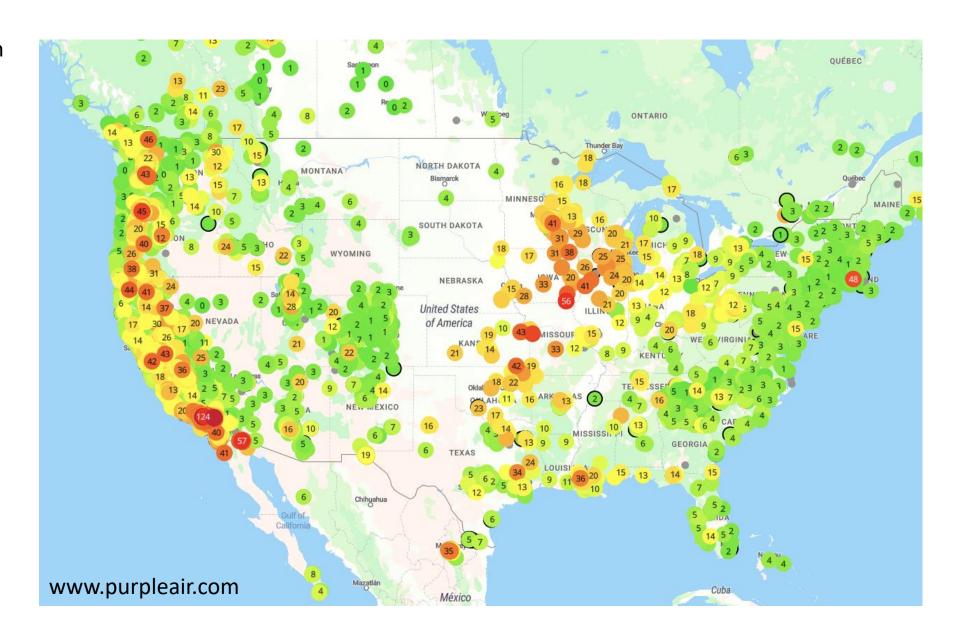
Temperature Cycling

Phase 5

Final CO₂ Concentration Ramp (Drift Measure)

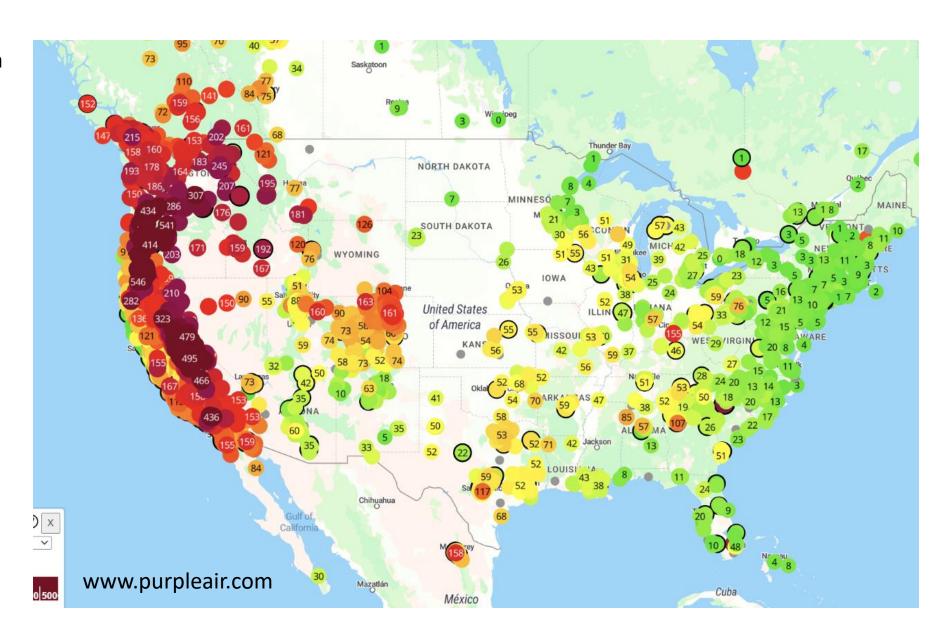
Increasing relevance and urgency for indoor air monitoring due to COVID-19; CO₂ may be proxy for indoor area crowding and transmission risk

• Status:


- Testing of 4 sensor models completed
- 2 subcommittee meetings
- Test method submitted to ASTM in preparation for ballot

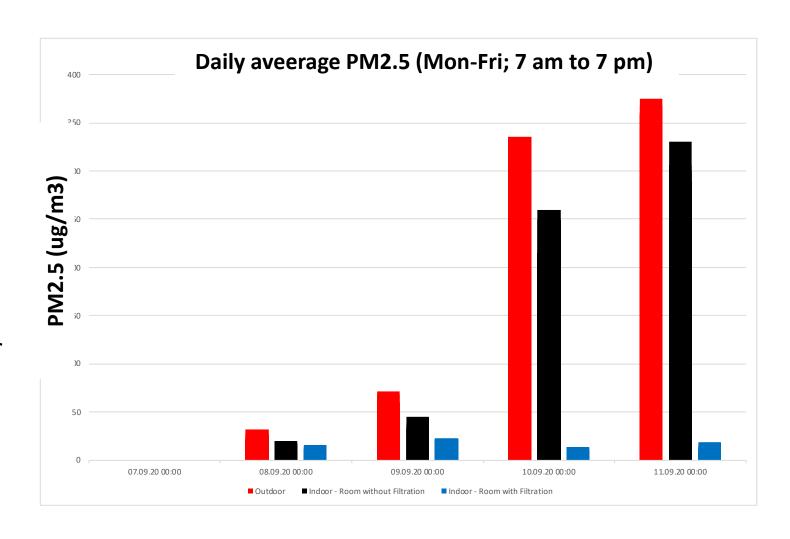
• Method Revisions:

- Greater specificity on permissible reference monitors
- Added more specified pressure conditions
- Added more requirements for reference monitor calibration


PM2.5 Sensor Application: Example 1 (04/03/21)

PM2.5 in ug/m3

PM2.5 Sensor Application: Example 2 (09/16/20)


PM2.5 in ug/m3

2020 Bay Area Wildfire Air Pollution Impact

- 2020 wildfires demonstrated effectiveness of high efficiency air filtration systems under extreme conditions
- Even with outdoor levels exceeding 300+ µg/m3, indoor PM2.5 remained below 25 µg/m3
- Data is from unoccupied classrooms

Smart HVAC Air Filter Monitoring

(South Coast AQMD Air Filtration Program)

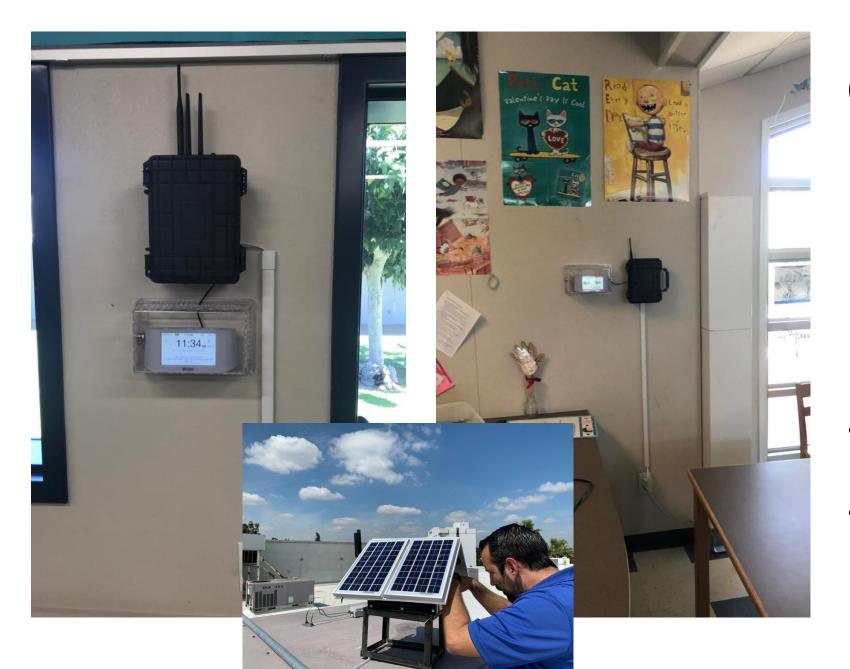
- Most schools replace medium efficiency filters on a fixed schedule, typically 3-4 time a year
- Wireless differential pressure sensors help characterize filter loading in HVAC systems
- Data from wireless sensors allows to switch from a fixed filter replacement schedule to a demand-based schedule
- Average filter life can be increased with smart filter monitoring

Wireless differential pressure sensor

Wireless differential pressure sensor installed on roof air handler

Smart Occupancy-Based Thermostats

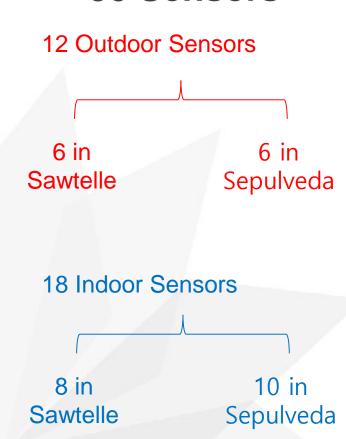
(South Coast AQMD Air Filtration Program)

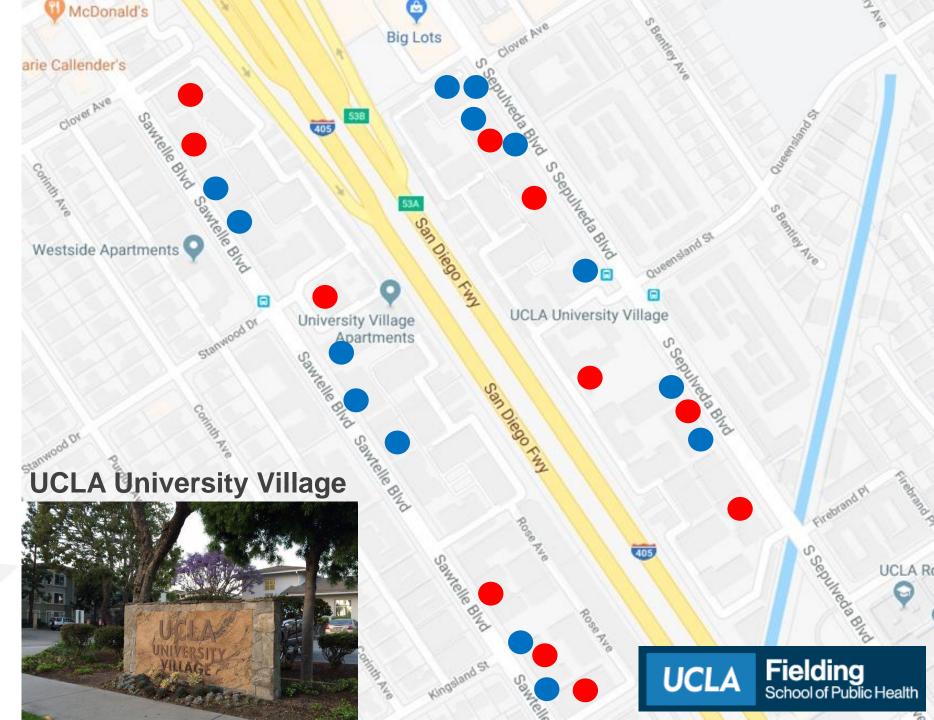

- Many US classrooms still have manually controlled thermostats (often not used)
- Occupancy-based thermostats can help ensure that HVAC systems run when they are needed the most
- Typical installation: smart wallmounted thermostat + wireless ceiling motion sensor

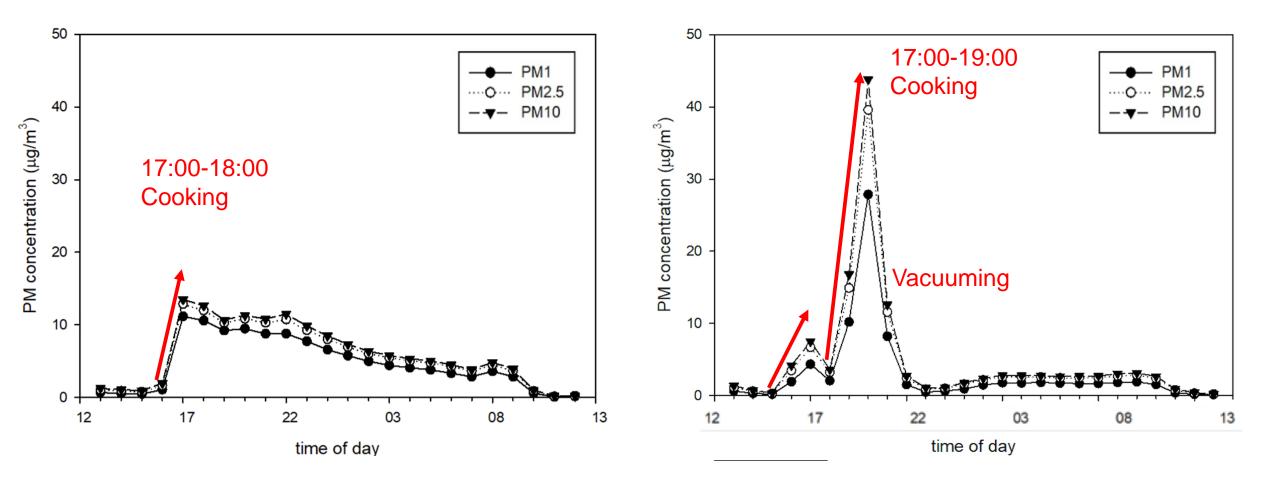
Manually controlled thermostat

Occupancy activated thermostat

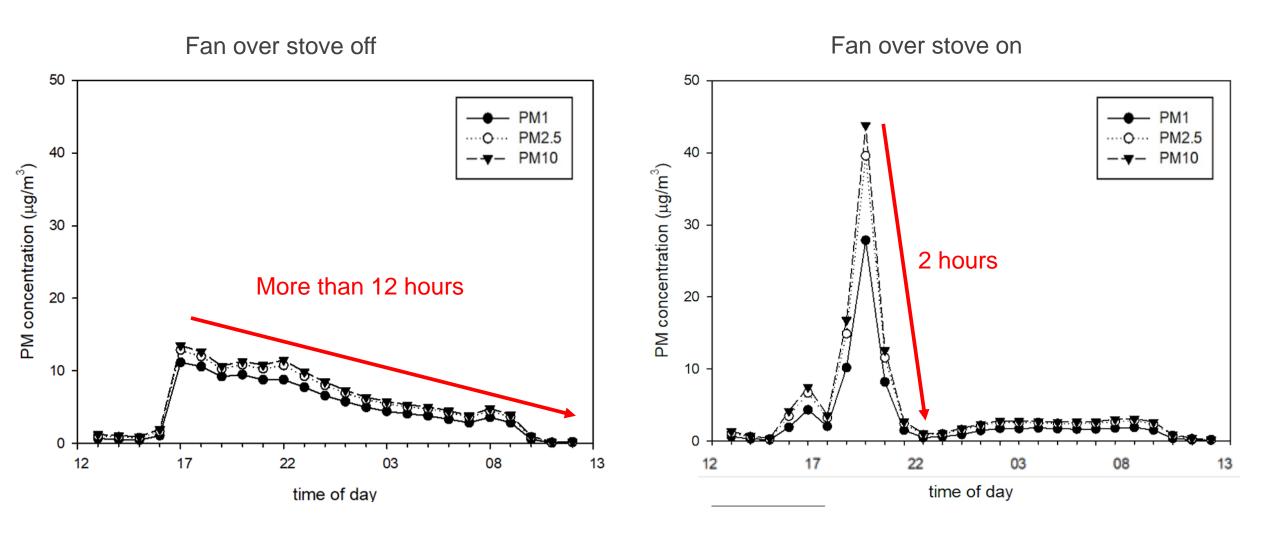
Indoor / Outdoor Monitoring

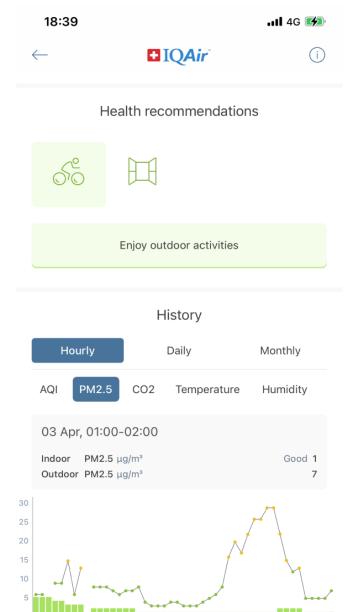



- PM 2.5, CO₂, temperature and humidity
- Teachers can see when ventilation is necessary or to be avoided


Indoor / Outdoor PM2.5 Measurements

30 Sensors

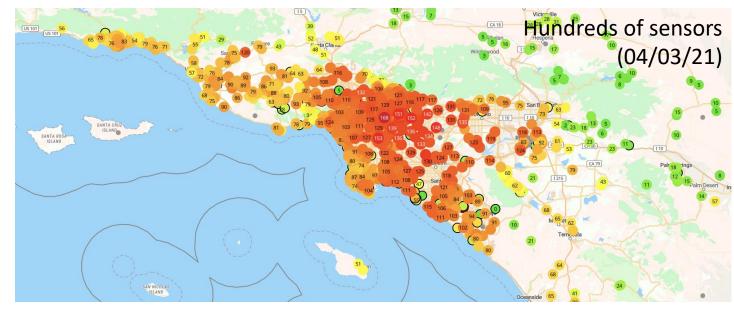

Indoor Sources: Cooking and Vacuuming



Indoor Sources: Cooking and Vacuuming

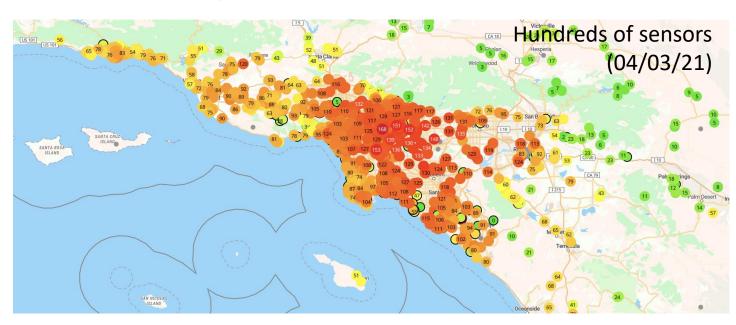
23:00

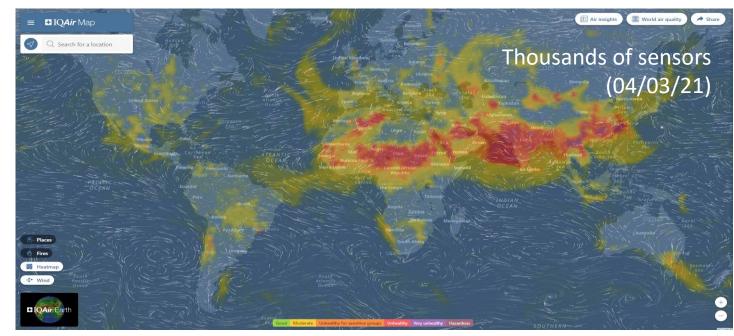
Alerts


Notifications

09:00

Favorite


Local, Regional and Global View



18:39 .11 4G 💋 **■ IQAir** Health recommendations Enjoy outdoor activities History Daily Hourly Monthly Temperature Humidity 03 Apr, 01:00-02:00 Indoor PM2.5 µg/m³ Good 1 Outdoor PM2.5 µg/m3 23:00 09:00 (1) Alerts Notifications Favorite

Local, Regional and Global View

Acknowledgements

Dr. Vasileios Papapostolou

Dr. Ashley Collier-Oxandale

Berj Der Boghossian

Dr. Brandon Feenstra

Dr. David Herman

Dr. Michelle Kuang

Randy Lam

Dr. Wilton Mui

Dr. Yifang Zhu (Professor; Department of Environmental Health Sciences)

Frank Hammes (IQAir CEO)

Thanks!

Dr. Andrea Polidori (apolidori@aqmd.gov)