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How do we study surfaces?

Molecular and structural approach Partitioning and exposure
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e 2D or 3D, small domains * 3D, large reservoir

* Known chemical composition * Partially known chemical composition

e Structure defined at the molecular level * Not defined at the molecular level .
2



Main questions

1. Definitions: What are indoor surfaces? What are good model indoor surfaces?

2. Partitioning: We need to better understand how surfaces act as pollutant sinks,
reservoirs and secondary sources

3. Surface chemistry: What is unique, different and/or relevant about it?

4. Occupant exposures: What is the role of surfaces in mediating exposures to
harmful chemicals? How can we assess the risks?

5. Practical applications: Can we remove pollution from surfaces?
Can indoor surfaces be engineered to improve IAQ?




Recent review articles on indoor surface chemistry
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NVITED MAJOR REVIEWS Indoor Surfacg Chemistry: D.eveloping
a Molecular Picture of Reactions
on Indoor Interfaces

Indoor acids and bases
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Model indoor materials for surface chemistry studies

Concrete

Drywall
core

Carpet

Wood/
cotton

Latex-

Painted
Drywall

Inorganic

Inorganic

Inorganic

Organic

Organic

Organic

Mixed

Inorganic/
Organic

Silicon Dioxide

Quicklime (Cement)
Limestone (Aggregate)

Gypsum

Polyethylene
terephthalate
(PET, polyester)

Nylon (e.g. Nylon 6)

Cellulose

Synthetic Rubber
(e.g. Co-Polymer of
Vinyl Acetate and
Butyl Acrylate)

| Material | Category | ___Model System

| Formulas Chemical Structure
. O O

Sio,

CaO
CaCOq

CaS0,-2H,0

[C10HgOul,

[NH(CH,)sCO],
[C6H1005]n

[CH;COOCH=CH,],
and
[CH,CHCOO(CH,),CH;],

Ca?* 0%

Si

Ault et al.,
Chem, 2020




Adsorption of limonene on hydroxylated silica (RH = 0)

Infrared spectroscopy Atomistic molecular dynamics simulations
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Adsorption of imonene on hydroxylated silica (RH # 0)

IR spectroscopy
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Tools to better understand
the molecular basis of:

* Fugacity and partitioning
* Surface chemistry

MD simulations

Increasing water on surface
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Frank et al., J. Phys. Chem. A, 2020
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Indoor surfaces are coated with adventitious layers, dust, skin cells

SVOC deposition on surfaces

Surface nicotine in homes, cars and hotels
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Nicotine in house dust (pg/g)
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Indoor ozone chemistry: surfaces play a major role

Surface removal rates are typically higher than air exchange Surface deposition vs. gas phase reaction

Table 3 Rate Constants (h™?) for the Removal of Ozone by Surfaces in Different Indoor Environments

Indoor environment

Surface removal rate,
kq(A/V), h—1

Reference

Aluminum Room (11.9 m?3)
Stainless Steel Room (14.9 m?)
Bedroom (40.8 m?)

Office (55.2 m?)

Home (no forced air)
Home (forced air)
Department Store

Office (24.1 m?)

Office (20.7 m?)
Office/Lab

Office/Lab

Office/Lab

13 Buildings, 24 Ventilation Systems
Museum

Museum

Office/Lab

Office/Lab

Office

Lab

Cleanroom

Telephone Office

43 Homes

32
1.4
72
4.0
29
54
4.3
4.0
43
4.3
3.2
3.6
3.6
4.3
4.3
4.0
3.2
2.5
25
7.6
0.8-1.0
28*1.3

Moueller et al., 1973
Ibid.
Ibid.
Ibid.

Sabersky et al., 1973
Ibid.
Thompson et al., 1973
Allen et al., 1978
Ibid.

Shair and Heitner, 1974
Ibid.

Ibid.

Shair, 1981; assumes A/V = 2.8 m !
Nazaroff and Cass, 1986
Ibid.

Weschler et al., 1989
Ibid.

Ibid.

Ibid.

Ibid.

Weschler et al., 1994; large office, small A/V
Lee et al., 1999
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Weschler, Indoor Air, 2000

Singer et al, Atmos. Environ., 2006




Ozone deposition: reactivity and byproducts
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What are the mechanisms of ozone’s reactive deposition?

Criegee reaction: Ozone + alkene

[__leMHO
~ ~ ~ N N N %0 [—r e

Squalene o =2:;et2:.=|
Geranylaceton;W
6-MHO Y\/\(

4-0PA W

1 4-butanedial ">

Arata et al, ES&T 2019 Acetone | Djill
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* Oxidation of linear and terminal alkenes leads to formation of
VOCs, with increasing yields at higher RH

0—0
J7\0 /an\/\ﬁ f\’@\/‘v’“\
THC
Wylie and Abbatt, ES&T 2020 Criegee intermediate

* Oxidation of endocyclic double bond is less likely to produce
small volatile fragments and secondary aerosols, due to the
lower volatility and increased polarity of byproducts

* Greater potential for exposure via dermal uptake and ingestion

What mechanisms can describe the

reaction of ozone with other species?

Initiation | [
| OH-HOjz, Fe2+, | |
choo UV, HS,. J

Hoigné and Bader, A

Water Res. 1977

Oz

(& others)

| Promotion ﬂt
03 HS,. ‘

|

/

* O, decomposes «\
in aqueous medium, | Inhibition |

with formation of
reactive radicals, peroxides.

* Possible reaction with adsorbed
species and substrate materials.

| HCOg COa A ’
| -BUOH, HS,... |




Chemistry of nitrogenated species on indoor surfaces

Flow tube reactor experiments Kitchen soiling is most reactive

surface
2 NOZ + HZO HONO + HNO3 | 0 Kitchen Living room Bedroom
60
* Process catalyzed by grime B
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z 30 r =]
1.5 =~
* Enhanced conversion with near UV 20 o 2
. . . . S 4r . NO
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. . 5 . > @ NO,
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Nitrosation of amines adsorbed to indoor surfaces

| HONO +H*=NO* + H,0 |

Nicotine

T
N . CH,

HONO (NO*)

¥ N H,0
NO = H N
=~ | /I\T - | O/NHZH
N CH, SN CH,
(b)
H H N H P H -
N NO & 7 HHO & NH,
I oy —> | 7
N7 PG N CH, N~ CHs
H
© % %
= §~ 1 H,O = k. H
— )/ — || 2
NO N CH, N

N ~ | O/N\
H,O \N ch, N=0
NNK
=0 H =0
"H HONO (= | N_ H
N / “N=0
H3O+ N CH3
H H

Sleiman et al, PNAS 2010

Amine nitrosation by HONO

e Postulated through
formation of NO*,
a strong electrophile.

* Indiluted agueous
solution, NO* (aq) forms
at low pH

* Do we have such acidic
conditions on the
surface?

e What other mechanisms
can catalyze NO*
formation?




Exposure: harm metrics only available for some compounds and routes

O CHs INDOOR DUST INDOOR SURFACES
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Remediation: can we remove pollution from surfaces?

Smoke from 6 cigarettes,

100 1 1 1 1 1 1 1 1
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Engineered surfaces can improve indoor environmental quality

* Indoor surfaces can be modified for air TiO,-coated quartz fiber air cleaning filters
cleaning purposes

* Passive (e.g., walls) and active applications

e Reactive and/or adsorptive approaches

Can air cleaners remove pathogens?
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34
g’ —e—Benzene
o BH3N2
§~ OHINT —O—Toluene
Eﬂ 2 DOAdenovirus —0—0-Xylene
—
—@—Undecane
—®—1-Butanol
0 -

I I —
Before After OFF After ON Formaldehyde

Virus titer before and after exposure to XP01 reactor.

. . . . 20 40 60 80 100 120 140
* PCO developed for aircraft cabin air cleaning

Residence time (ms)

—— Acetaldehyde

L | | | |
 Removes VOCs and inactivates pathogens t 08 Facevelocity (ms) 0.4 02
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Gorvel et al., Clean Soil Air Water, 2014 Destaillats et al., Applied Catalysis B: Environmental, 2012
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