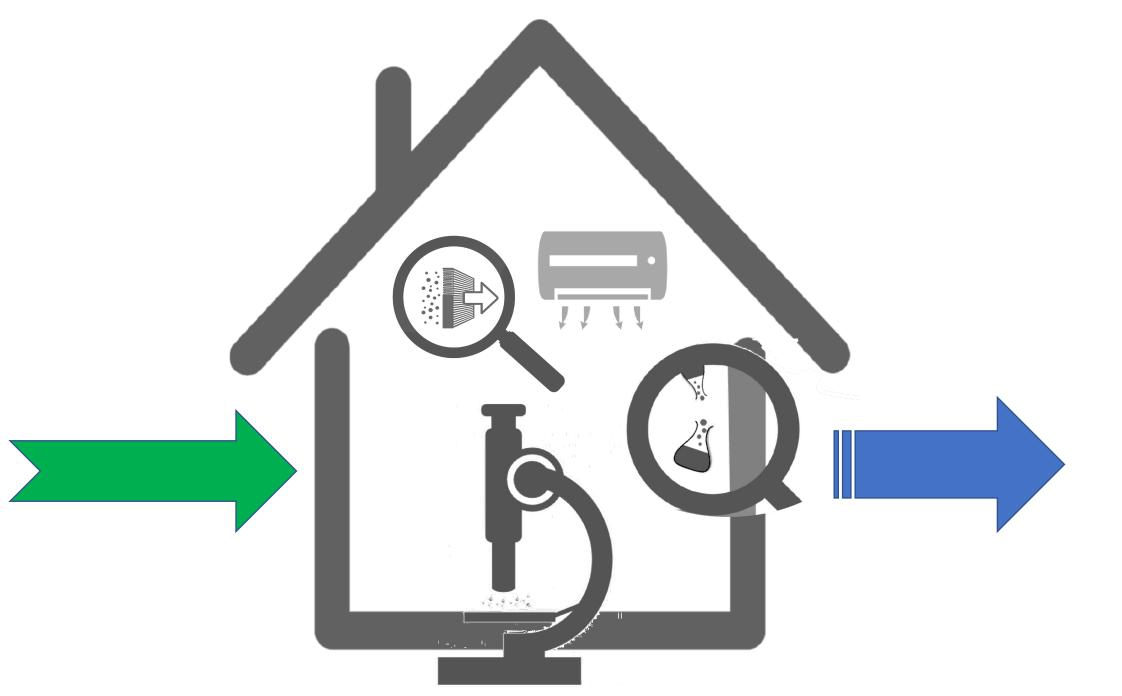
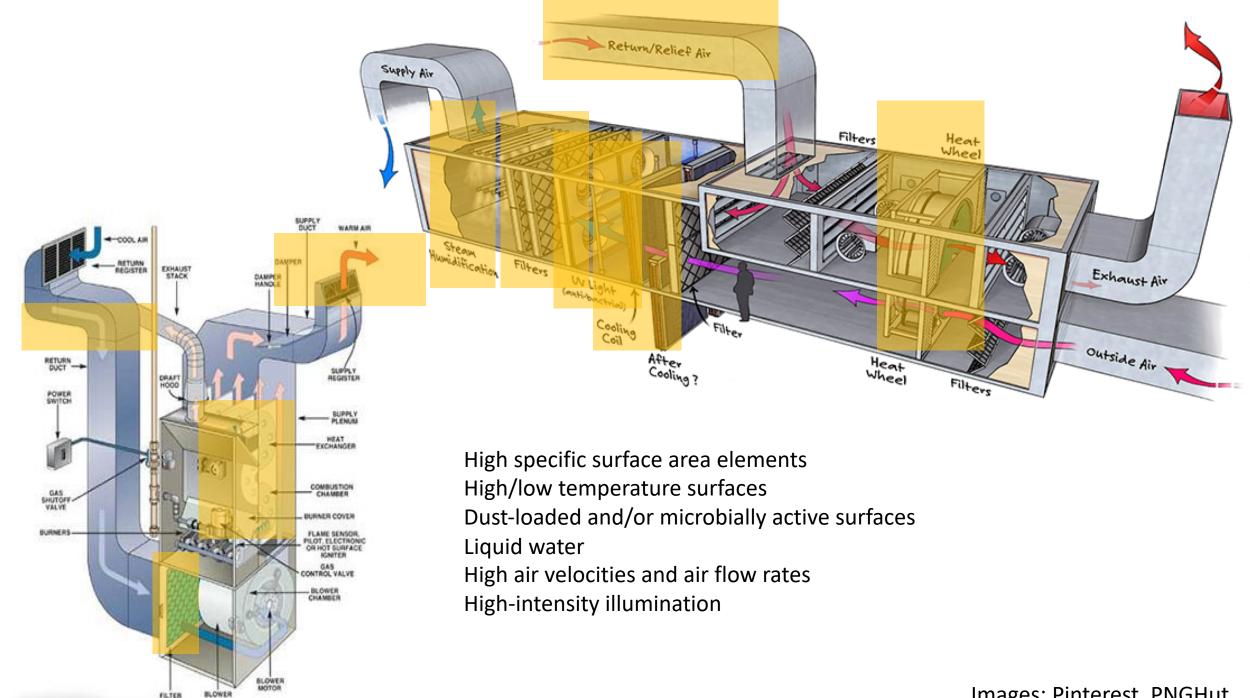
CANADIAN CENTRE FOR BUILDING EXCELLENCE


Engineering Health and Efficiency

Relationships between the Building and Indoor Chemistry

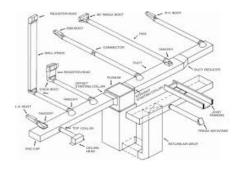
Jeffrey Siegel, jeffrey.siegel@utoronto.ca

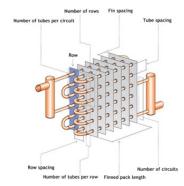


Two Specific "Systems"

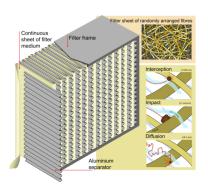
- Heating, ventilation, and air conditioning (HVAC) systems
- Unseen and interstitial spaces
 - High surface area to volume ratio
 - High dust/contamination concentrations
 - Condensed water
 - Extreme temperatures and humidities

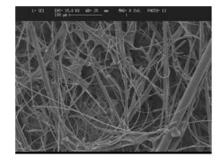
Table 1. Emission sources and problems identified in HVAC systems


SOURCES AND PROBLEMS	TYPICAL EXAMPLES
Intrinsic emission sources	
1. Seals, caulks, adhesives	outgassing of VOCs, deterioration
2. Fibers	asbestos, fiber shedding
3. Metal degradation products	deterioration and entrainment of coatings, platings, metal surfaces
4. Lubricating oils, etc.	fans, motors in the air stream
5. Ozone	release by electrostatic air cleaners
Emission sources resulting from contam	ination
1. Dust	construction material, skin cells, etc., with accumulation possibly leading to microbial contamination, VOC sorption-desorption, and low flows
2. Other organic debris	leaves, bird droppings
3. Growth of microorganisms	growth and aerosolization of bioaerosols and VOCs from micro-organisms at sites including: cooling coils, drain pans, drains, traps and sumps, filters, insulation, duct surfaces, plenums, humidifiers and evaporative coolers, cooling towers
4. VOC sinks	filters, sound absorbers, insulation materials, deposited dust
5. Cleaning compounds and biocides	biocides, disinfectants, deodorizers
6. Boiler steam	anticorrosives, biocides, slimicides, oxygen-scavenging or filming chemicals, anti-corrosives, pH control neutralizers
Design/operational effects on IAQ	
 Entrainment and re-entrainment Rotary heat exchangers Building pressurization Transport Climate control Ventilation and air exchange 	leaks, polluted outside air, building exhaust sorption-desorption of VOCs intake of polluted outside air odor, VOC and particle migration high humidity inadequate dilution of internal sources, inadequate outside air


Images: Pinterest, PNGHut

HVAC System Physical Properties


- Clean surface area to volume ratios
 - Ducts (~1-10/m)
 - Heat exchangers (100-1000/m)
 - HVAC filter (~100/m)
- Air velocities and airflows
 - 1-5 m/s
 - 1-10 building volumes/h
- Temperatures
 - 50-80 °C heat exchangers & radiators
 - 5-15 °C cooling coils

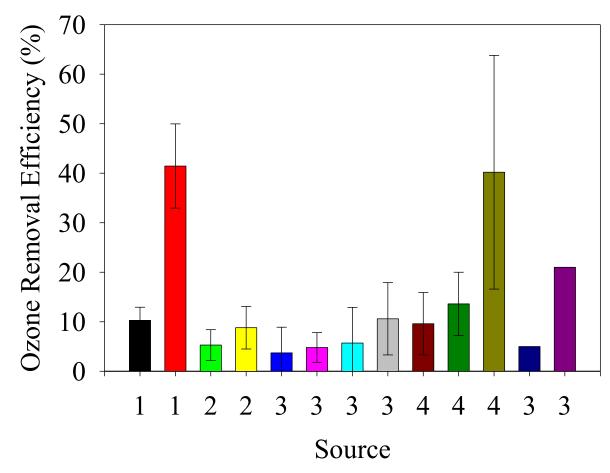


Images: https://www.pickhvac.com/hvac-ductwork-cost/
https://www.dh-ts.com/power-generation-industrial-products/coils/
https://en.wikipedia.org/wiki/HEPA, https://medium.com/

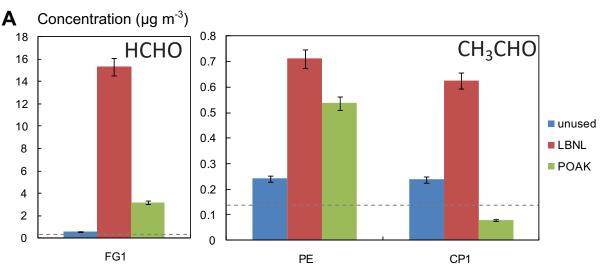
Air Distribution Systems

Sheet metal (+rubber, plastics, insulation)

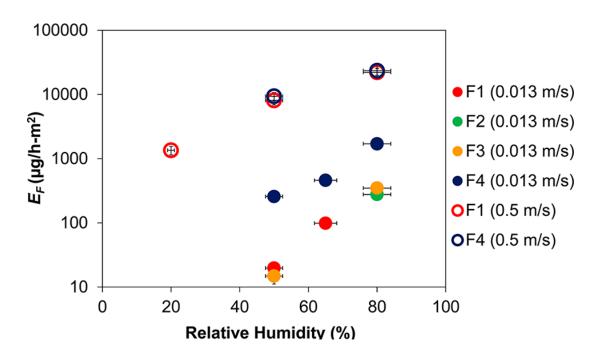
- Image: basc.pnnl.gov
- Even when "clean": Sealants, lubricants, cutting oils, gaskets


Table 1. Emission rates of total volatile organic compounds (TVOC) and aldehydes from duct components. Table 3. Emission rates of total volatile organic compounds (TVOC) and aldehydes from duct components after exposure to ozone for 24 hr.

	Emission Rate (µg m ⁻² hr ⁻¹) ^b				
Material	TVOC	нсно	CH3CHO	Acetone	C ₅ -C ₁₀ Aldehydes
new duct liners					
NDL2	b	b	b	29	b
NDL3 used duct liners	b	40	b	b	b
UDL2	950	b	b	87	220
UDL3	1280	37	b	38	260
UDL4	b	29	25	b	b
UDL5	b	b	b	b	b
used fan-box					
insulation	1140	d	d	b	b
neoprene gasket	7200	b	b	b	b
duct connector	670	b	b	b	b
duct sealant	8800	b	67	b	760
spiral-wound duct galvanized	b	b	b	b	b
sheet metal air filters	b	b	b	b	b
AF1	b	b	b	b	b
AF2	b	b	b	b	b
AF3	550	b	20	57	b
AF4	430	38	b	b	b


Emission Rate (µg m ⁻² hr ⁻¹) ^a						Ozone (ppb)	
Material	TVOC	нсно	CH3CHO	Acetone	C ₅ -C ₁₀ Aldehydes	Inlet	Chamber/Outlet
NDL2	550	b	20	166	380	110	72 ± 12
NDL3	b	60	b	b	b	140	31 ± 8
neoprene gasket	6400	b	b	120	330	140	65 ± 9
duct sealant	4000	24	290	b	660	100	27 ± 15

Morrison et al. (1998) JAWMA


Clean And Used Filters

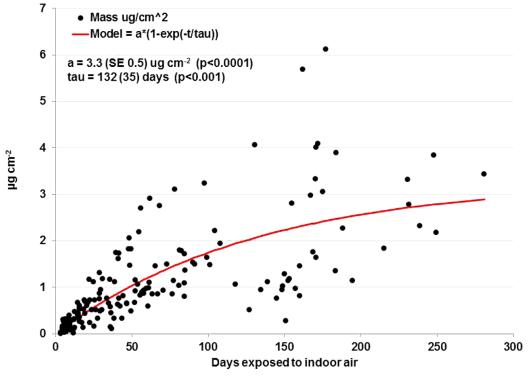
- 1. Zhao et al. (2007) Atmos Environ
- 2. Beko et al. (2006) Indoor Air
- 3. Hyttinen et al.(2003) Indoor Built Environ
- 4. Hyttinen et al. (2006) Atmos Environ

Destaillats et al. (2011) Atmos Environ

Sidheswaran et al. (2013) Environ Sci Tech

Heating Heat Exchangers

"Heat treatment induces a significant increase in the number of emitted sub-micron particles, probably dominated by condensation particles. This occurs even at low temperatures, (50–100 °C), which are often present in an indoor environment."


Pederson et al. (2001) Atmos Environ

UFP source	C _{max} (particles/cm ³)	Estimated source strength (particles/min × 10 ¹¹
Flat iron (without steam) on a cotton sheet	550	0.007
Flat iron (with steam) on a cotton sheet	7200	0.06
Air-freshener spray	29,900	2.34
Scented candles	69,600	0.88
Pure wax candle	241,500	3.65
Electric stove	111,500	6.8
Radiator	218,400	8.84
Vacuum cleaner with full bag	21,400	0.35
Vacuum cleaner (motor) without bag	38,300	0.38
Cigarette	213,300	3.76
Gas stove	79,600	1.30
Heater	116,800	3.89
Frying meat	150,900	8.27

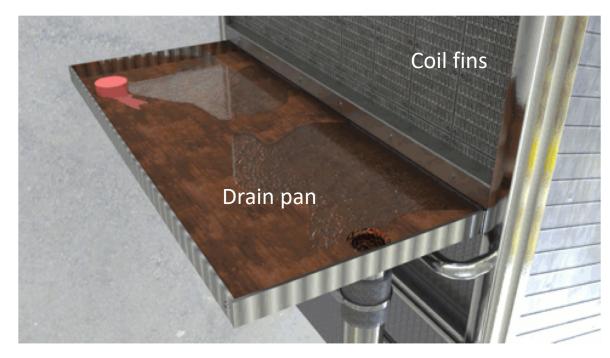
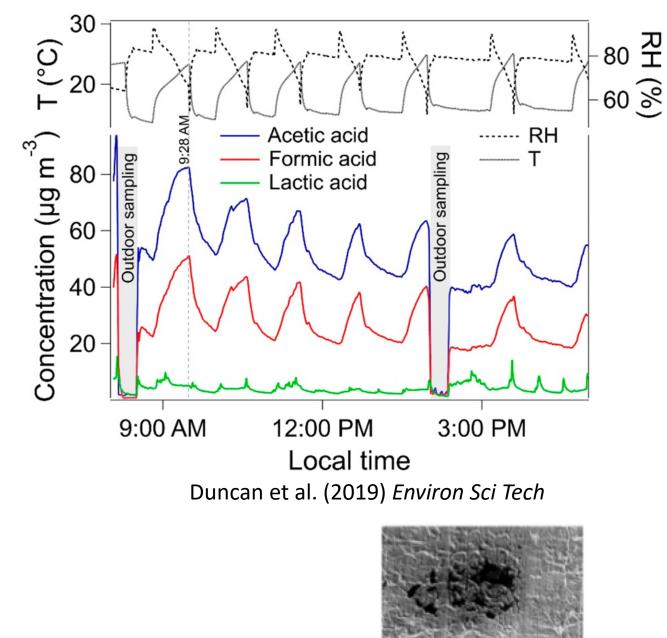
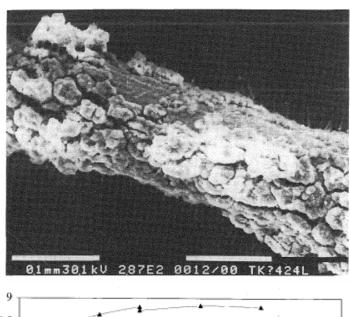
Afshari et al. (2005) Indoor Air

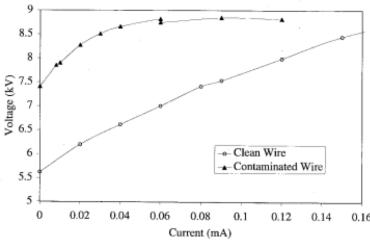
"Emissions of volatile organic compounds from heated dust from different sources were surprisingly similar. However, the temperature at which the emission of volatiles started varied with the dust source."

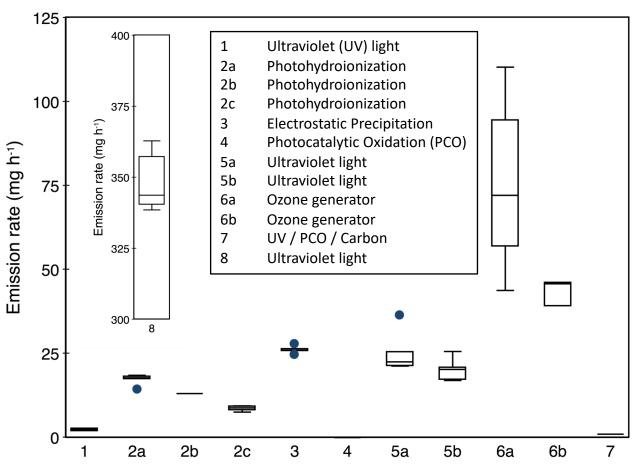
Pederson et al. (2003) *Indoor Air*

Wallace et al. (2017) Environ Sci Tech

Cooling Coils

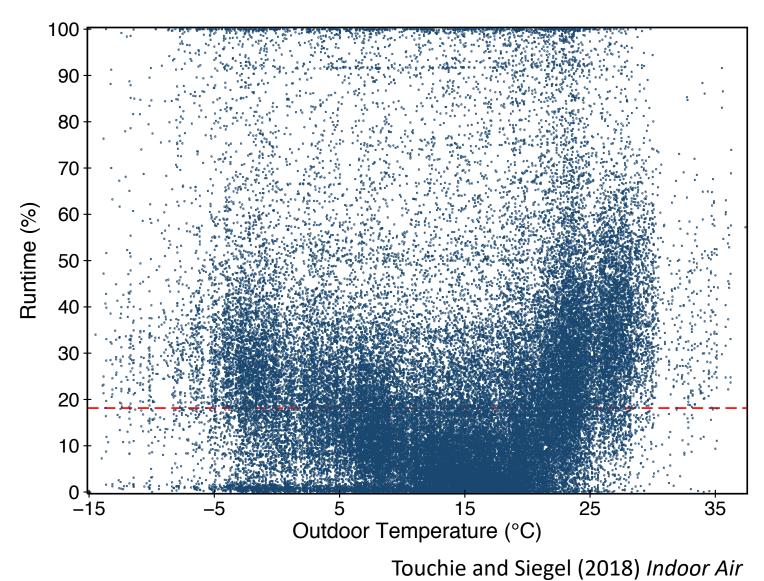





Image: https://www.brodi.com/hvac



Bastidas et al. 2006 Copper Conf.

Air Cleaning (Electrostatic Precipitators +UV)



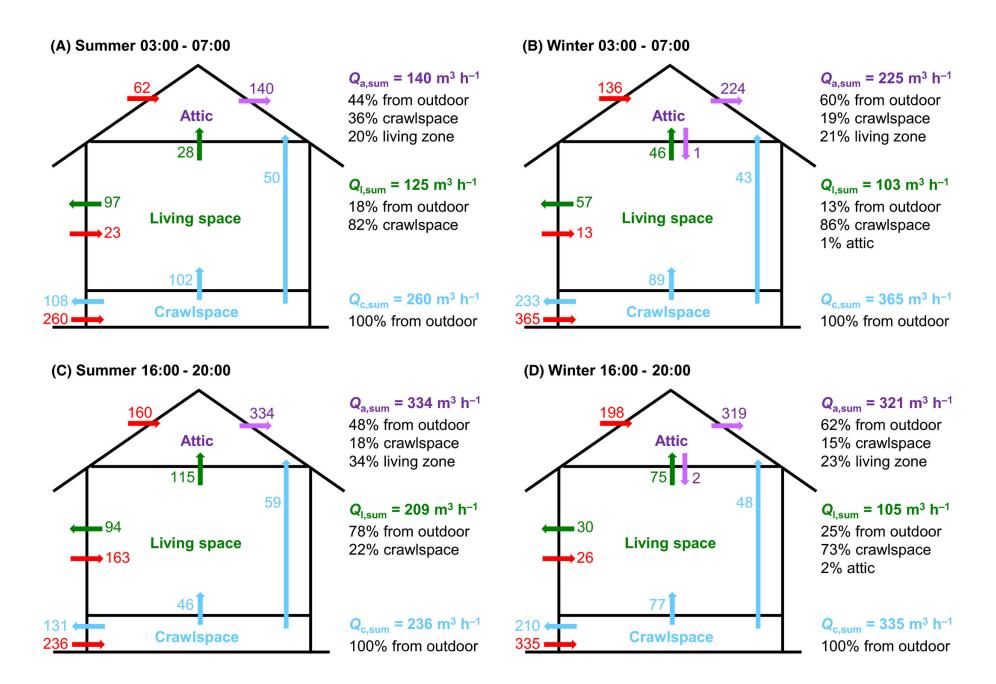
Davidson and McKinney (1998) Aerosol Sci Tech

Siegel et al. (2014) Indoor Air Conf

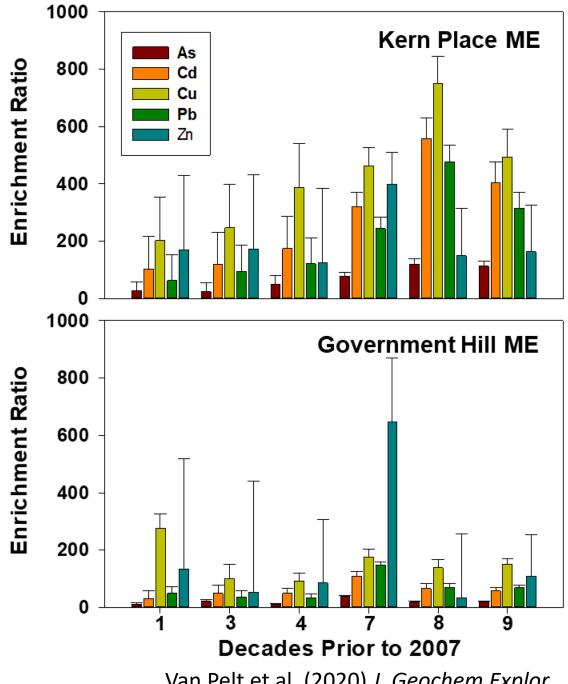
Cycling Behaviour

From HVAC Systems to Unseen Spaces

- High surface area to volume ratios
- Not cleaned
- Condensation + high humidity
- Thermal extremes
- Insulation and building materials



Images: greenbuildingadvisor, iko.com, jadelearning.com, Inspectapeida,



Liu et al. 2018 Indoor Air

Attic Chemistry

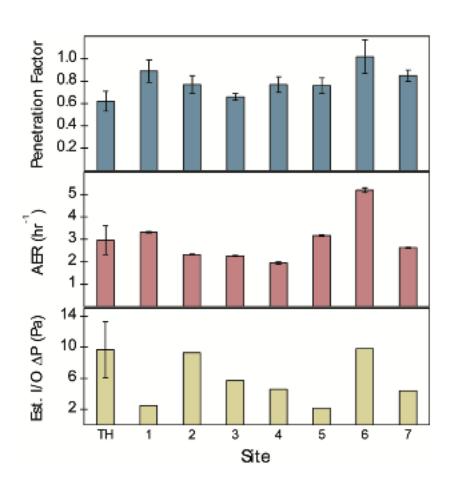
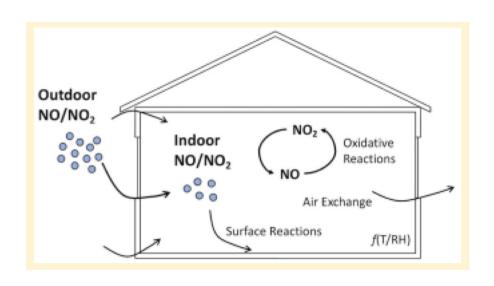
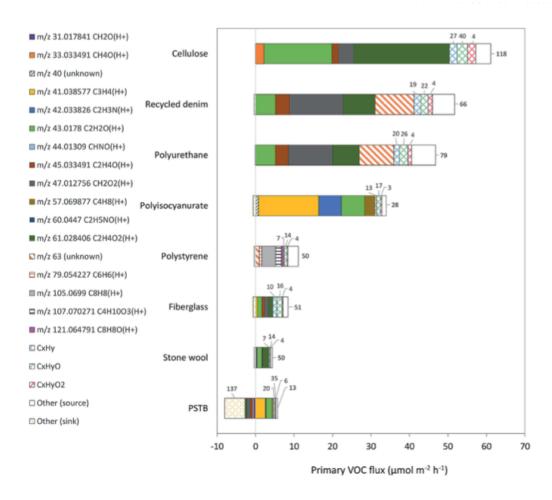


Image: beautyharmonylife.com/

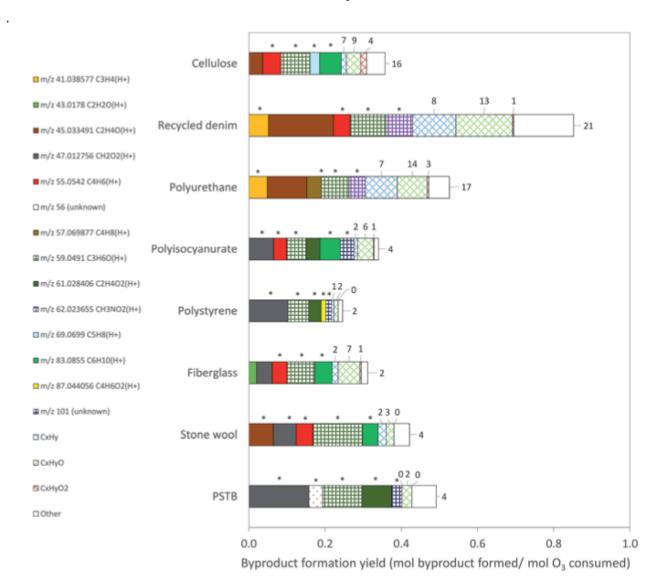


Van Pelt et al. (2020) J. Geochem Explor

Chemistry in the Building Enclosure



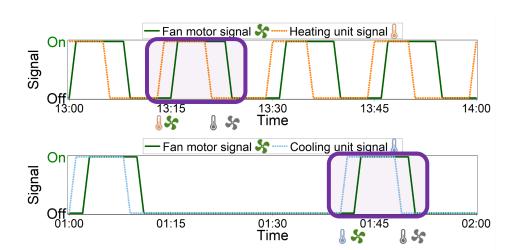
Date	P (Equation 7) (–)
June 17, 2014	0.37 ± 0.04
June 27, 2014	0.41 ± 0.03
July 9, 2014	0.49 ± 0.04
July 15, 2014	0.74 ± 0.06
July 17, 2014	0.63 ± 0.02
July 18, 2014	0.68 ± 0.02
July 18, 2014	0.48 ± 0.02
July 19, 2014	0.52 ± 0.02
July 22, 2014	0.69 ± 0.02
July 25, 2014	0.60 ± 0.03
July 25, 2014	0.61 ± 0.02
July 31, 2014	0.52 ± 0.03
July 31, 2014	0.53 ± 0.03
August 5, 2014	0.54 ± 0.02
August 7, 2014	0.44 ± 0.02
August 7, 2014	0.58 ± 0.02
August 10, 2014	0.50 ± 0.03
August 10, 2014	0.56 ± 0.03
August 22, 2014	0.40 ± 0.05
August 26, 2014	0.47 ± 0.03
September 29, 2014	0.59 ± 0.03
Mean	0.54
s.d.	0.10



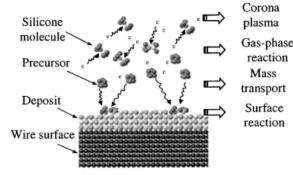
$$P_{NO} = ^1$$

 $P_{NO2} = 0.72 \pm 0.06$

Insulation – Emissions and Chemistry

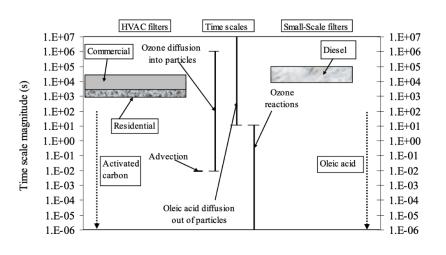


Chin et al. (2019) Env Sci Processes Impacts

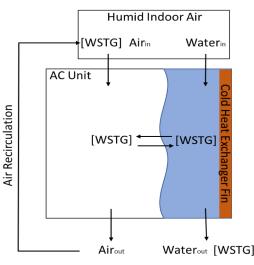


Research Needs

- Need a framework to understand when different processes are important
 - Climate and context
 - Building materials
 - "Taxonomy" of HVAC systems
 - Temporal dynamics



Li and Siegel (2018) Indoor Air Conf



Chen and Davidson (2004)

Plasma Chem Plasma Process

Zhao (2006) PhD Thesis UT Austin

Schwartz-Narbonne et al. Submitted

If you want to understand indoor chemistry, you have to understand the building and its systems.