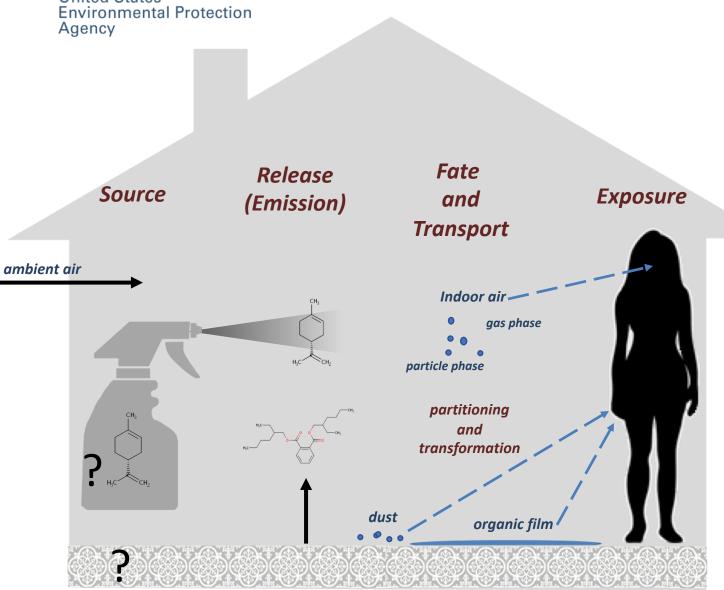


Modeling Exposure to Chemicals in Indoor Air

Emerging Science on Indoor Chemistry
A Virtual Information-Gathering Workshop

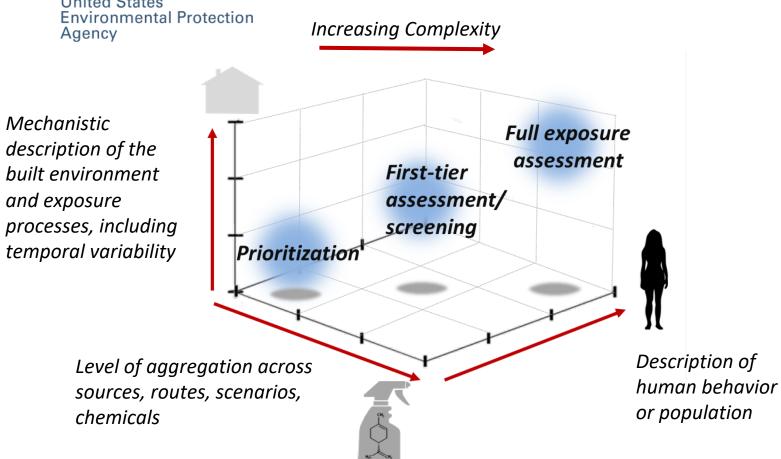
Kristin Isaacs and John Wambaugh
Center for Computational Toxicology and Exposure
Office of Research and Development
U.S. Environmental Protection Agency
isaacs.kristin@epa.gov https://orcid.org/0000-0001-9547-1654
wambaugh.john@epa.gov https://orcid.org/0000-0002-4024-534X

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA


Environmental Protection

Overview

- Modeling exposures in the indoor (near-field) environment
 - Challenges
 - Strategies and recent advances
- From exposure to risk
 - Integrating near-field exposure predictions with other pathways
 - Tools for predicting internal exposures
 - Risk-based prioritization


From Source to Exposure Indoors

- Exposure is the *contact* between a receptor (human) and a chemical (carried by an environmental medium)
 - Many exposure metrics that describe the duration, intensity, and pattern of contact
- Modeling exposure requires some estimate of concentrations in indoor media (e.g., air)
 - Function of source, release, and fate and transport (as discussed in many other talks today)
- Exposure is also dependent on *human* **behaviors** and housing characteristics
 - Exposure factors
 - Consumer habits and practices (product use patterns)

Fit-for-Purpose Exposure Modeling Frameworks

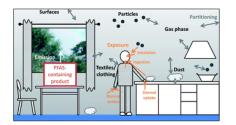
Mechanistic

and exposure

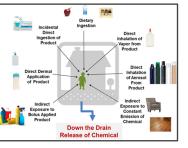
temporal variability

chemicals

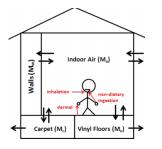
Fit-for-Purpose Exposure Modeling Frameworks


Environmental Protection Agency

description of the built environment processes, including


Full exposure assessment First-tier assessment/ screening Prioritization Level of aggregation across sources, routes, scenarios,

Increasing Complexity

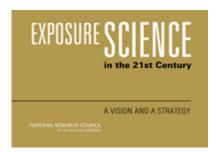

Eichler and Little, 2020

SHEDS-HT, Isaacs et al., 2014

Li et al., 2018

FINE, Shin et al., 2015

EPA, 2019


- Models of different levels of complexity have overlapping data needs
- They also share some universal challenges

Challenges and Data Gaps Associated with **Modeling Exposure**

What are additional challenges beyond the inherent gaps associated with source, emission, and fate and transport characterization?

2012

Data accessibility

- It is difficult to identify existing data relevant to a given exposure scenario
- NAS 2017: "...most information is fragmented, incompletely organized, and not readily available or accessible ...the full potential of the existing and emerging information for exposure-based and riskbased evaluations cannot be realized."

Population variability

- Human behavior is complex, and surveys and field studies are expensive
- NAS 2012: Recommendation to "explore options for using data obtained on individuals and populations through market-based and product-use research to improve exposure information"

Mixtures or co-Exposures

NAS 2017: Assessing cumulative exposure and exposure to mixtures is a high-value activity, and "computational exposure methods will help to identify chemical mixtures to which people are exposed."

Model validation

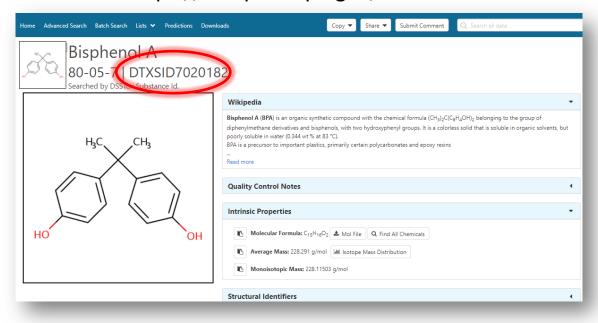
- Data for validating predictions are often limited
- NAS 2017: Continued efforts to measure and estimate concentrations in multimedia sources—such as indoor air, indoor surfaces, dust, and consumer products—are required to address uncertainty in near-field exposures and pathways.

2017

Frameworks for Improving Data **Organization and Model Parameterization**

4,4'-(Propane-2,2-diyl)diphenol Phenol, 4,4'-(1-methylethylidene)bis-80-05-7

BPA

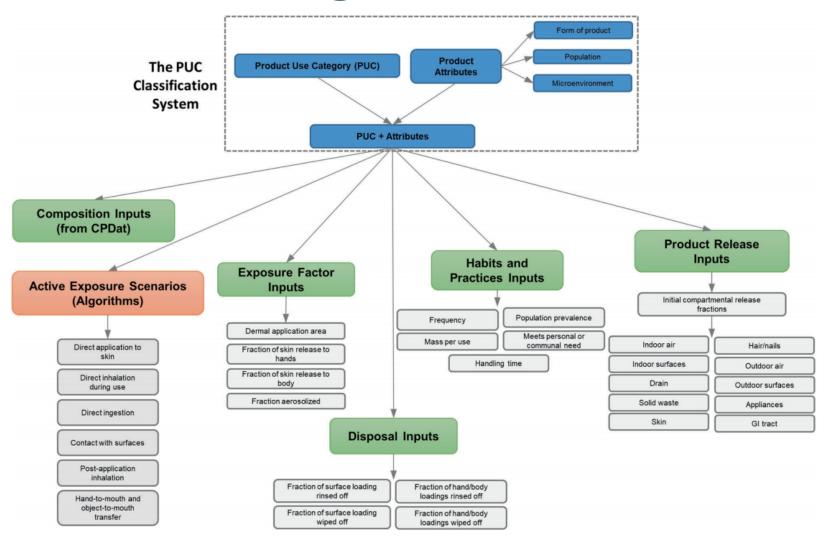

4.4'-Propane-2.2-divldiphenol Phenol, 4,4'-(1-methylethylidene)bis-4-06-00-06717

(4,4'-Dihydroxydiphenyl)dimethylmethane

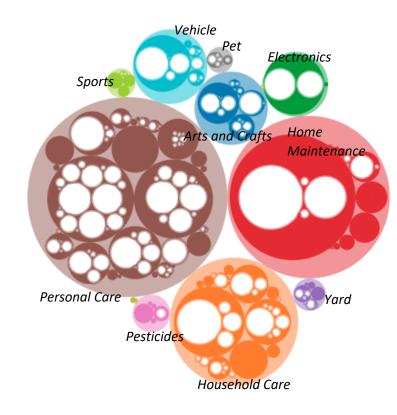
- 2,2-Bis(4'-hydroxyphenyl) propane
- 2,2'-Bis(4-hydroxyphenyl)propane
- 2,2-BIS-(4-HYDROXY-PHENYL)-PROPANE
- 2,2-Bis(4-hydroxyphenyl)propane
- 2,2-Bis(p-hydroxyphenyl)propane
- 2,2-Di(4-Hydroxyphenyl) Propane
- 2,2-DI(4-HYDROXYPHENYL)PROPANE
- 2,2-Di(4-phenylol)propane
- 4,4'-(1-Methylethylidene)bisphenol
- 4,4'-Bisphenol A
- *4,4'-DIHYDROXYPHENYL-2,2-PROPANE*
- 4.4'-isopropilidendifenol
- 4,4'-Isopropylidendiphenol
- 4,4'-Isopropylidene bisphenol
- 4.4-ISOPROPYLIDENE DIPHENYL
- 4,4'-Isopropylidenebis[phenol]
- 4,4'-isopropylidenediphenol
- 4,4'-Methylethylidenebisphenol
- Bis(4-hydroxyphenyl)dimethylmethane Bis(p-hydroxyphenyl)propane

+100 more

https://comptox.epa.gov/dashboard

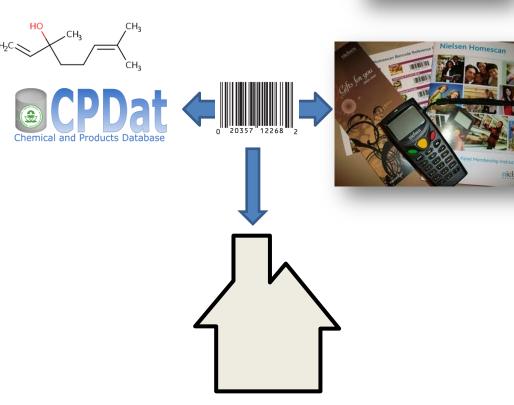

Chemical frameworks

Substance can be any single chemical, mixture, polymer


Unique chemical structure

Frameworks for Improving Data **Organization and Model Parameterization**

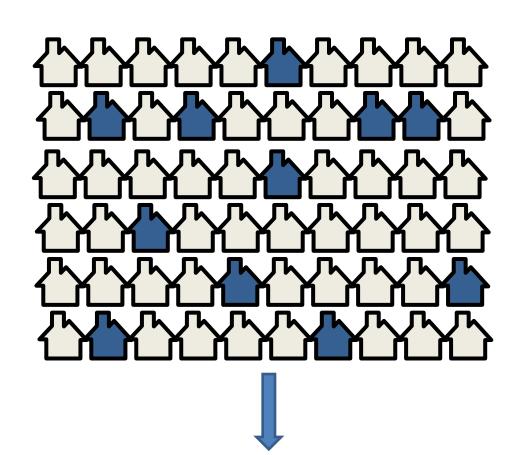
- Chemical frameworks
- Product frameworks



Addressing Challenges with Novel Data Streams

Environmental Protection Agency

- EPA Office of Research and Development entered a collaboration with the Nielsen company
- Nielsen provided consumer product purchasing data for 60,000 U.S. households from their National Consumer Panel Study ("Homescan")
- Purchasing data were integrated with CPDat ingredient data by **Universal Product Code**
- Analyses informed co-exposures and demographic differences in habits and practices


{Chemical1, Chemical2.....Chemical 50}

Addressing Challenges with Novel Data Streams

Environmental Protection Agency

- EPA Office of Research and Development entered a collaboration with the Nielsen company
- Nielsen provided consumer product purchasing data for 60,000 U.S. households from their National Consumer Panel Study ("Homescan")
- Purchasing data were integrated with CPDat ingredient data by **Universal Product Code**
- Analyses informed co-exposures and demographic differences in habits and practices
- We identified all chemicals being introduced into homes within the same month (and thus had potential co-exposure)
- Used a data-mining technique (Frequent Itemset Mining) to identify frequently-occurring combinations of chemicals across households (broad group of chemicals and potential endocrineactive chemicals)
- Were able to examine impact of demographics (race, household size, income, education) on frequent combinations

{Chemical1, Chemical8, Chemical 20}

Addressing Challenges with Novel Data Streams

 Here demographics and chemical sets are clustered to indicate the similarity

of rankings of chemical combinations

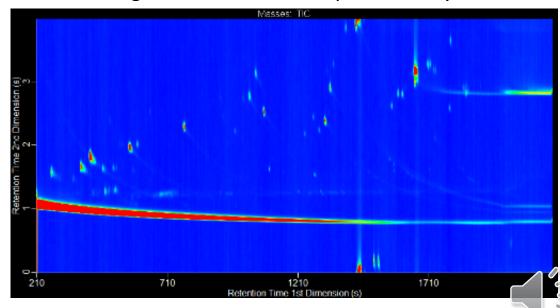
- Cell color reflects relative prevalence of the chemical combination (rank across all prevalent combinations) for the demographic versus total population
- We could identify patterns in chemical co-occurrence
- Examples of rank departures for certain demographics are highlighted
- Results can be used to prioritize chemicals for testing in *in vitro* systems

Potential Endocrine Active Chemicals

																	Demographic
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	{limonene propylparaben}
-1	0	-1	0	0	0	0	0	-2	-3	0	0	0	0	0	0		{propylparaben methylparaben ethylparaben}
													-	-			
-1	0	-1	0	0	0	0	-2	1	1	0	0	0	0	-1	-1		{propylparaben fd&c blue no. 1}
0	0	0	0	0	0	0	-2	2	1	0	0	0	0	-1	-1	0	{limonene fd&c blue no. 1}
1	0	0	0	0	0	1	-2	2	1	0	1	0	0	-1	-1	0	{limonene propylparaben fd&c blue no. 1}
1	-8	4	0	0	0	1	3	-2	0	0	1	0	0	3	3	0	{diphenyl oxide linalool}
1	0	1	-1	-1	0	0	-1	2	0	0	1	-1	-1	0	-1	0	{2-hydroxy-4-methoxybenzophenone propylparaben benzophenone}
6	2	0	1	1	0	2	4	-7	-9	-13	2	1	1	0	1	-17	{dl-tocopherol mixture phytonadione}
2	1	1	0	0	-1	-1	0	0	1	0	2	-2	-1	0	0	-1	{decamethylcyclopentasiloxane propylparaben}
2	1	1	0	0	1	2	0	4	1	2	2	1	1	0	0	2	{2-hydroxy-4-methoxybenzophenone methylparaben ethylparaben benzoph
1	0	0	0	0	0	2	0	4	1	1	2	1	0	-1	0	2	{2-hydroxy-4-methoxybenzophenone propylparaben methylparaben ethylpa
1	-3	5	0	0	0	1	0	2	1	1	2	0	0	1	0	1	{decamethylcyclopentasiloxane 2-hydroxy-4-methoxybenzophenone benzopi
-5	0	3	0	0	0	1	0	0	1	1	2	-1	0	0	0	1	{decamethylcyclopentasiloxane linalool}
-3	4	-3	-1	0	0	-1	0	2	1	0	1	1	-1	0	0	1	{diazolidinyl urea propylparaben}
-5	-3	2	1	0	0	-1	-1	-3	-1	2	-3	-6	-3	0	0	-1	{1-cedr-8-en-9-ylethanone decamethylcyclopentasiloxane}
4	-1	4	0	-1	0	2	-1	0	1	0	0	-1	0	0	-1	1	{2-hydroxy-4-methoxybenzophenone linalool benzophenone}
8	-2	3	-1	-9	0	4	-1	3	3	2	-4	-1	-4	0	-4	3	{linalool limonene}
-4	6	-4	-1	-2	0	0	3	-7	-2	-6	6	2	4	-3	2	-3	{linalool 2-phenylethanol
3	-1	3	-1	3	-3	-3	-3	-1	0	1	4	-1	0	0	-1	1	{1-cedr-8-en-9-ylethanone propylparaben}
6	-2	2	1	-1	0	3	-1	9	6	3	6	-1	0	0	1	3	{decamethylcyclopentasiloxane limonene}
Asian	African American	Hispanic	White	Grade And High Schoo	College	Post College	No Child	Under 6	Under 13	Under 18	Lower	Mid Lower	Mid Higher	Higher	Non-Childbearing	Childbearing	

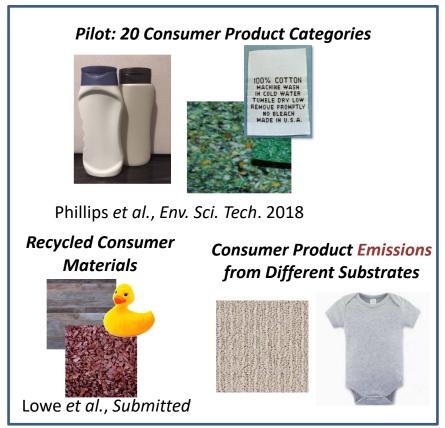
araben | benzophenone}

ohenone)

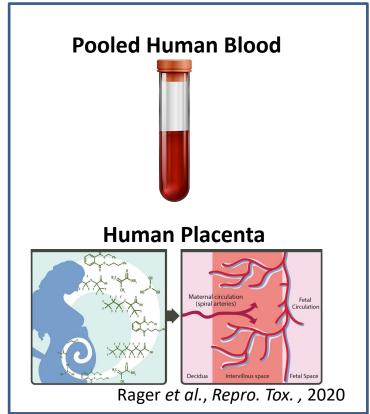


Non-Targeted Analysis: Increasing the Data Available for Model Evaluation

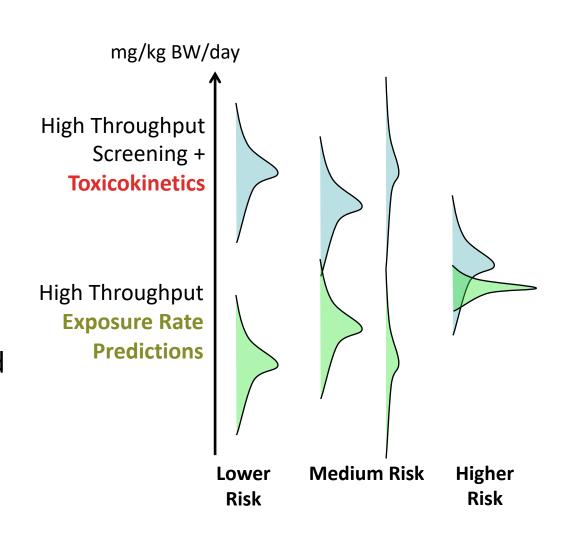
- Targeted Analysis:
 - We know exactly what we're looking for
 - 10s 100s of chemicals
- Non-Targeted Analysis (NTA) or Suspect Screening Analysis (SSA)
 - We have no preconceived targets
 - 1,000s 10,000s of chemicals
- Can supplement and evaluate predicted concentrations in sources (e.g., consumer products), in indoor media, and human receptors (e.g., blood concentrations)
 - Occurrence
 - Prioritization of confirmation with standard targeted methods


High Resolution Mass Spectrometry

Published and Ongoing NTA Studies in the ExpoCast Project


Source and Release

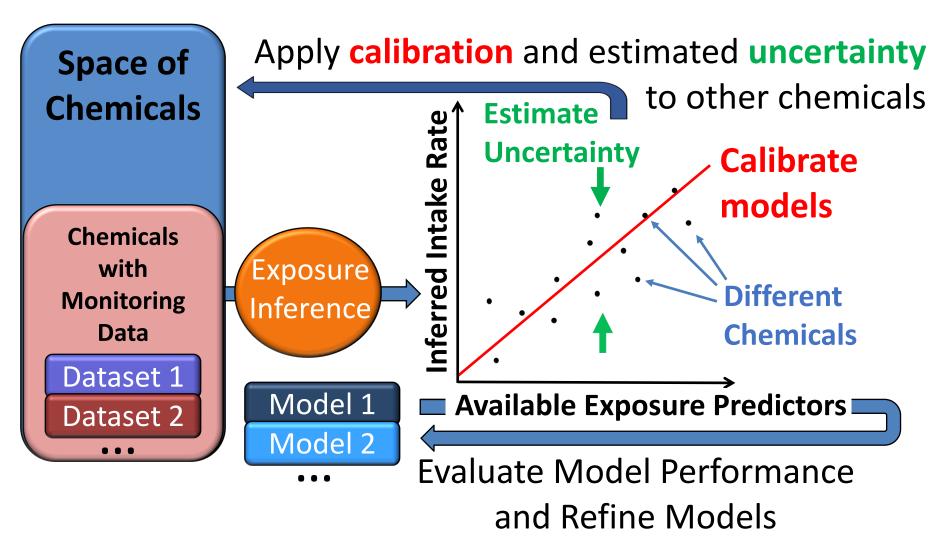
Fate and Transport


Exposure

Emerging Science: How can we quantify concentrations of chemicals in media using NTA?

Chemical Risk = Hazard x Toxicokinetics x Exposure

- We have applied the same general philosophy to both exposure rate prediction and toxicokinetics:
- The fun part of science is building models quantitative theories of how the world works
- The tough part is evaluating models we collect evaluation data where we can
- This allows us to estimate uncertainty and potentially extrapolate to new circumstances
- We identify modeling gaps places where we need new models
- More than anything we identify data gaps need more data to better evaluate model



Evaluating Exposure Models with the SEEM Framework

We use Bayesian methods to incorporate multiple models into consensus predictions for 1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM)

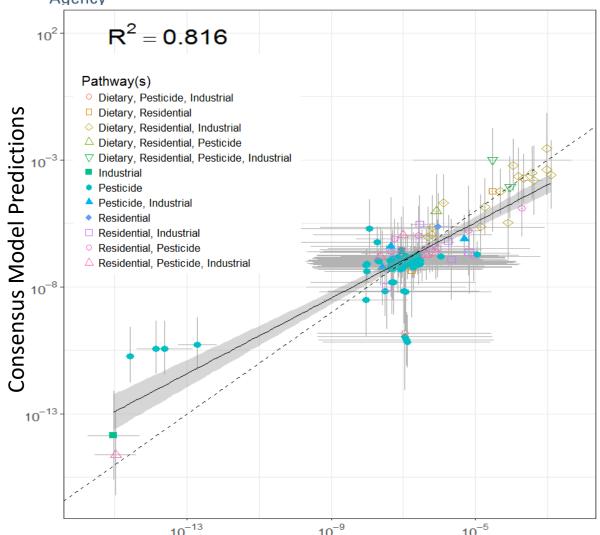
(Wambaugh et al., 2013, 2014; Ring et al., 2018)

SEEM3 Collaboration

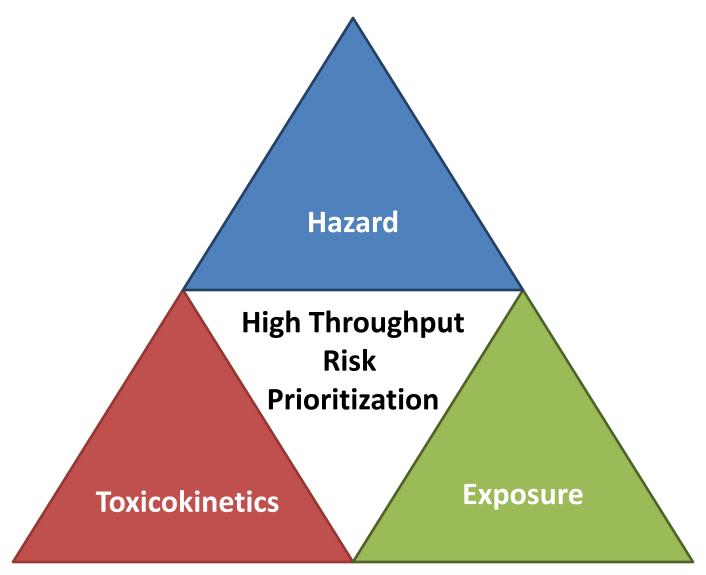
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate


Predictor	Reference(s)	Chemicals Predicted	Pathway(s)
EPA Inventory Update Reporting and Chemical Data	US EPA (2018)	7856	All
Reporting (CDR) (2015)			
Stockholm Convention of Banned Persistent Organic	Lallas (2001)	248	far field Industrial and
Pollutants (2017)			Pesticide
EPA Pesticide Reregistration Eligibility Documents	Wetmore et al. (2012, 2015)	239	far field Pesticide
(REDs) Exposure Assessments (Through 2015)			
United Nations Environment Program and Society for	Rosenbaum et al. (2008)	8167	far field Industrial
Environmental Toxicology and Chemistry toxicity model			
(USEtox) Industrial Scenario (2.0)			
USEtox Pesticide Scenario (2.0)	Fantke et al. (2011, 2012, 2016)	940	far field Pesticide
Risk Assessment IDentification And Ranking (RAIDAR)	Arnot et al. (2008)	8167	far field Pesticide
far field (2.02)			
EPA Stochastic Human Exposure Dose Simulator High	Isaacs (2017)	7511	far field Industrial and
Throughput (SHEDS-HT) near field Direct (2017)			Pesticide
SHEDS-HT near field Indirect (2017)	Isaacs (2017)	1119	Residential
Fugacity-based INdoor Exposure (FINE) (2017)	Bennett et al. (2004), Shin et al. (2012)	645	Residential
RAIDAR-ICE near field (0.803)	Arnot et al., (2014), Zhang et al. (2014)	1221	Residential
USEtox Residential Scenario (2.0)	Jolliet et al. (2015), Huang et al. (2016,2017)	615	Residential
USEtox Dietary Scenario (2.0)	Jolliet et al. (2015), Huang et al. (2016), Ernstoff et al. (2017)	8167	Dietary

Inferred Exposure Rates from CDC NHANES

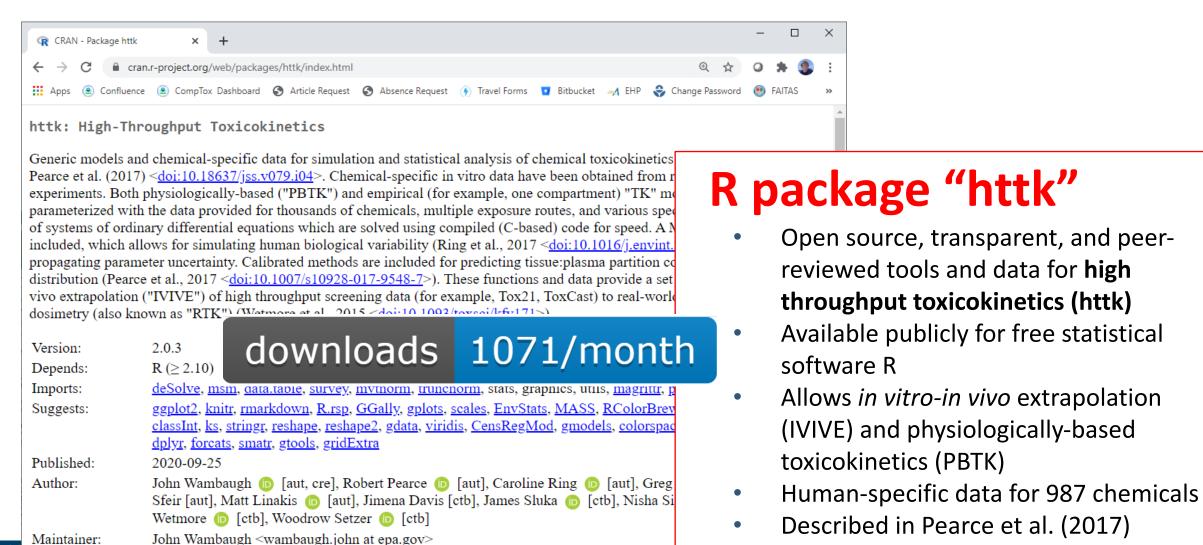

- Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey (NHANES) provides an important tool for monitoring public health
- Large, ongoing CDC survey of US population: demographic, body measures, medical exam, biomonitoring (health and exposure), ...

SEEM3: Pathway-Based Consensus Modeling



- SEEM3 consensus model provides estimates of human median intake rate (mg/kg/day) for nearly 500,000 chemicals via the CompTox Chemicals Dashboard (http://comptox.epa.gov/dashboard)
- SEEM3 first predicts relevant exposure pathways from chemical structure – model predictions are then weighted according to the models' abilities to explain NHANES data
- We rely on pathway determinations from Cpdat
- We rely on NHANES biomonitoring data
 - 2014 FIFRA Scientific Advisory Panel identified need for broader sets of evaluation data

Intake Rate (mg/kg BW/day) Inferred from NHANES Serum and Urine


Risk = Hazard x Toxicokinetics x Exposure

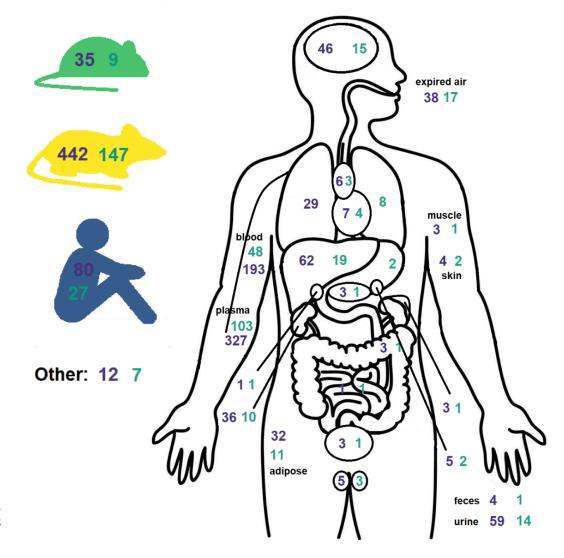
Open-Source Tools and Data for HTTK

https://CRAN.R-project.org/package=httk

Maintainer:

BugReports:

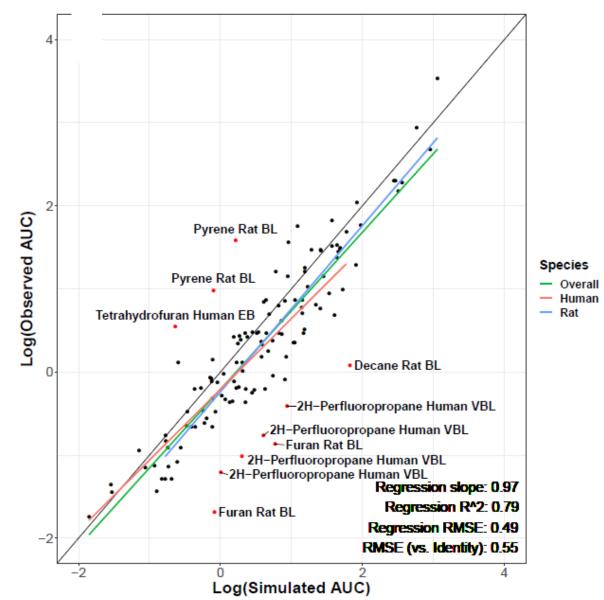
https://github.com/USEPA/CompTox-ExpoCast-httk



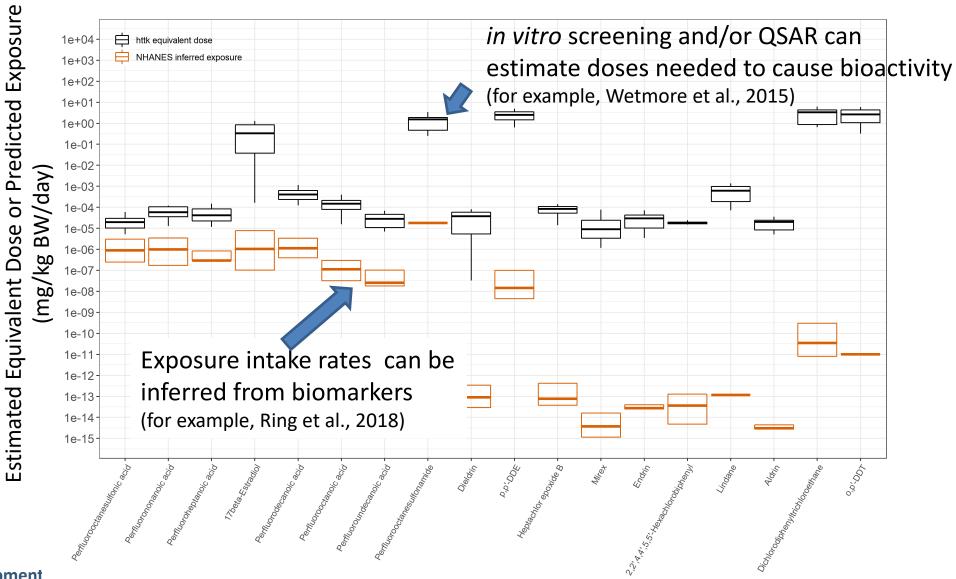
In Vivo TK Database

https://github.com/USEPA/CompTox-PK-CvTdb

- EPA has developed a public database of concentration vs. time data for building, calibrating, and evaluating TK models
- Curation and development ongoing, but to date includes:
 - 198 analytes (EPA, National Toxicology Program, literature)
 - Routes: Intravenous, dermal, oral, sub-cutaneous, and inhalation exposure
- Standardized, open source curve fitting software invivoPKfit used to calibrate models to all data:


https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Developing Models with the CvT Database


- USAF and EPA developed generic gas inhalation physiologically-based toxicokinetic (PBTK) model
- Evaluated HTTK with CvTdb: 142 exposure scenarios across 41 volatile organic chemicals were modeled and compared to published in vivo data for humans and rat
- Overall RMSE was 0.69, R² was 0.54 for full concentration time-course across all chemicals and both species
- R² was 0.69 for predicting peak concentration
- R² was 0.79 for predicting time integrated plasma concentration (Area Under the Curve, AUC)

United States Environmental Protection Agency

Risk-based Chemical Prioritization

- We can use HT-PBPTK gas inhalation model to infer exposures consistent with NHANES data for volatile chemicals
- Can compare those intake rates with doses predicted to cause toxicity:
- Bioactivity:Exposure Ratio (BER) allows risk-based prioritization

Summary

- We need to know chemical hazard, exposure, and toxicokinetics to assess risk posed to the public health
- At EPA we build consensus models and evaluate them to estimate uncertainty relies on available data
- Data Needs for Exposure:
 - Expanded monitoring data
 - NTA will need for semi-quantitative methods
 - We must also catalog the chemicals that should be present
 - Models for formulation-dependent emission rates from household products
- Data needs for Toxicokinetics:
 - USAF and EPA developing aerosol exposure PBTK model but we need a particle dissolution model
 - Need additional chemical concentration vs. time in tissue (CvT) data studies exist in the literature but must be made machine-readable
- All models to date focus on chemicals with well-defined structures
 - What do we do about chemicals of unknown, variable composition, or biologicals (UBCBs)?

ExpoCast Project (Exposure Forecasting)

Center for Computational Toxicology and Exposure

Linda Adams

Lucas Albrecht*

Matthew Boyce*

Miyuki Breen

Alex Chao

Daniel Dawson

Mike Devito

Alex East

Lindsay Eddy

Christopher Eklund Charles Lowe

Peter Egeghy

Marina Evans

Alex Fisher

Rocky Goldsmith

Louis Groff*

Chris Grulke

Colin Guider*

Mike Hughes

Victoria Hull

Kristin Isaacs

Richard Judson

Jen Korol-Bexell

Anna Kreutz

Seth Newton

Katherine Phillips

Paul Price

Tom Purucker

Ann Richard

Caroline Ring

Risa Sayre

Marci Smeltz*

Jon Sobus

Zach Stanfield*

Mike Tornero-Velez

Rusty Thomas

Elin Ulrich

Dan Vallero

Barbara Wetmore

John Wambaugh

Antony Williams

CEMM Hongwan Li Xiaoyu Liu Zachary Robbins* **Mark Strynar**

Collaborators

Arnot Research and Consulting

Integrated Laboratory Systems
Xiaoqing Chang
Shannon Bell

National Toxicology Program Steve Ferguson

Kamel Mansouri Ramboll

Harvey Clewell

Silent Spring Institute Robin Dodson Simulations Plus

Michael Lawless

Southwest Research Institute Alice Yau

Kristin Favela

Summit Toxicology Lesa Aylward

Technical University of Denmark

Peter Fantke

Inilever

Cecilie Rendal

United States Air Force Heather Pangburn

Iniversity of California, Davis

Deborah Bennett University of Michigan

University of Texas, Arlington Hyeong-Moo Shin University of Nevada

University of North Carolina, Chapel Hill

Julia Rager **Marc Serre**

References

Arnot, Jon A., et al. "Screening level risk assessment model for chemical fate and effects in the environment." Environmental science & technology 40.7 (2006): 2316-2323.

Aylward, Lesa L., and Sean M. Hays. "Consideration of dosimetry in evaluation of ToxCast™ data." Journal of Applied Toxicology 31.8 (2011): 741-751.

Breyer, Stephen. Breaking the vicious circle: Toward effective risk regulation. Harvard University Press, 2009

Cohen Hubal, EA, et al. "Advancing internal exposure and physiologically-based toxicokinetic modeling for 21st-century risk assessments." Journal of exposure science & environmental epidemiology (2018).

Collins FS, Gray GM, Bucher JR. Transforming environmental health protection. Science. 2008:319:906–907.

Dionisio, Kathie L., et al. "Exploring consumer exposure pathways and patterns of use for chemicals in the environment." Toxicology reports 2 (2015): 228-237.

Dionisio, Kathie L., et al. "The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products." Scientific data 5 (2018): 180125.

Dix David, et al. "The ToxCast program for prioritizing toxicity testing of environmental chemicals." Toxicol Sci. 2007;95:5–12

Egeghy, P. P., et al. (2012). The exposure data landscape for manufactured chemicals. Science of the Total Environment, 414, 159-166.

Eichler C. and Little J. A framework to model exposure to per- and polyfluoroalkyl substances in indoor environments. Environ Sci Process Impacts. 2020 Mar 1;22(3):500-511.

Filer, Dayne L., et al. "tcpl: the ToxCast pipeline for high throughput screening data." Bioinformatics 33.4 (2016): 618-620.

Goldsmith, M-R., et al. "Development of a consumer product ingredient database for chemical exposure screening and prioritization." Food and chemical toxicology 65 (2014): 269-279.

Hertzberg, R. P., & Pope, A. J. (2000). high throughput screening: new technology for the 21st century. Current opinion in chemical biology, 4(4), 445-451.

Isaacs K., et al. Establishing a system of consumer product use categories to support rapid modeling of human exposure. J Expo Sci Environ Epidemiol. 2020 Jan;30(1):171-183.

Jamei, et al. "The Simcyp® population-based ADME simulator." Expert opinion on drug metabolism & toxicology 2009b;5:211-223

Judson, Richard, et al. "The toxicity data landscape for environmental chemicals." Environmental health perspectives 117.5 (2008): 685-695.

Kaewkhaw, R., et al. (2016). Treatment paradigms for retinal and macular diseases using 3-D retina cultures derived from human reporter pluripotent stem cell linestreatment design using PSC-Derived 3-D retina cultures. Investigative ophthalmology & visual science, 57(5), ORSFI1-ORSFI11.

Kavlock, Robert, et al. "Update on EPA's ToxCast program: providing high throughput

decision support tools for chemical risk management." Chemical research in toxicology 25.7 (2012): 1287-1302.

Kavlock, R. J., et al. (2018). Accelerating the pace of chemical risk assessment. Chemical research in toxicology, 31(5), 287-290

Li L, et al. A Model for Risk-Based Screening and Prioritization of Human Exposure to Chemicals from Near-Field Sources. Environ Sci Technol. 2018 Dec 18;52(24):14235-14244.

MacLeod, Matthew, et al. "The state of multimedia mass-balance modeling in environmental science and decision-making." (2010): 8360-8364.

Mansouri, Kamel, et al. "OPERA models for predicting physicochemical properties and environmental fate endpoints." Journal of cheminformatics 10.1 (2018): 10.

McNally, et al., "PopGen: a virtual human population generator." Toxicology 2014

National Research Council. (1983). Risk Assessment in the Federal Government: Managing the Process Working Papers. National Academies Press.

National Research Council. (2007). Toxicity testing in the 21st century: a vision and a strategy. National Academies Press.

National Research Council. Exposure Science in the 21st Century: a Vision and a Strategy. National Academies Press, 2012.

Park, Youngja, H., et al. "high performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring." Toxicology 295:47-55 (2012)

Pearce, Robert, et al. "httk: R Package for high Throughput Toxicokinetics." Journal of Statistical Software, 2017

Phillips, Katherine A., et al. "high throughput screening of chemicals as functional substitutes using structure-based classification models." Green Chemistry 19.4 (2017): 1063-1074.

Phillips, Katherine A., et al. "Suspect screening analysis of chemicals in consumer products." Environmental science & technology 52.5 (2018): 3125-3135.

Ring, Caroline L., et al. "Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability." Environment International 106 (2017): 105-118.

Ring, Caroline L., et al. "Consensus modeling of median chemical intake for the US population based on predictions of exposure pathways." Environmental science & technology 53.2 (2018): 719-732.

Rotroff, Daniel M., et al. "Incorporating human dosimetry and exposure into high throughput in vitro toxicity screening." Toxicological Sciences 117.2 (2010): 348-358

Schmidt, Charles W. "TOX 21: new dimensions of toxicity testing." Environmental health perspectives 117.8 (2009): A348.

Shibata, Yoshihiro, et al. "Prediction of hepatic clearance and availability by cryopreserved human hepatocytes: an application of serum incubation method." Drug Metabolism and disposition 30.8 (2002): 892-896.

Shin, Hyeong-Moo, et al. "Risk-based high throughput chemical screening and prioritization

using exposure models and in vitro bioactivity assays." Environmental science & technology 49.11 (2015): 6760-6771.

Sipes, Nisha S., et al. "An intuitive approach for predicting potential human health risk with the Tox21 10k library." Environmental science & technology 51.18 (2017): 10786-10796.

US Congress. "Frank R. Lautenberg Chemical Safety for the 21st Century Act." (2016).

U.S. E.P.A. (2018) "A Working Approach for Identifying Potential Candidate Chemicals for Prioritization." https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/identifying-existing-chemicals-prioritization-under-tsca

U.S. G.A.O.. "Toxic substances: EPA has increased efforts to assess and control chemicals but could strengthen its approach." (2013).

U.S. EPA. https://www.epa.gov/tsca-screening-tools/approaches-estimate-consumer-exposure-under-tsca#consumer.

Wallace, Lance A., et al. "The TEAM study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota." Environmental research 43.2 (1987): 290-307.

Wambaugh, John F., et al. "high throughput models for exposure-based chemical prioritization in the ExpoCast project." Environmental science & technology 47.15 (2013): 8479-848.

Wambaugh, John F., et al. "High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals." Environmental science & technology (2014).

Wambaugh, John F., et al. "Toxicokinetic triage for environmental chemicals." Toxicological Sciences 147.1 (2015): 55-67.

Wambaugh, John F., et al. "Evaluating in vitro-in vivo extrapolation of toxicokinetics." Toxicological Sciences 163.1 (2018): 152-169.

Wambaugh, John F., et al. "Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization" Toxicological Sciences (2019), *in press*

Wambaugh, John F., et al. "New Approach Methodologies for Exposure Science." Current Opinion in Toxicology (2019).

Wang, Ying-Hong. "Confidence assessment of the Simcyp time-based approach and a static mathematical model in predicting clinical drug-drug interactions for mechanism-based CYP3A inhibitors." Drug Metabolism and Disposition 38.7 (2010): 1094-1104.

Waters, Nigel J., et al. "Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding." Journal of pharmaceutical sciences 97.10 (2008): 4586-4595.

Wetmore, Barbara A., et al. "Integration of dosimetry, exposure and high throughput screening data in chemical toxicity assessment." *Tox. Sciences* (2012)

Wetmore, Barbara A., et al. "Incorporating high throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing." Toxicological Sciences 148.1 (2015): 121-136.

Office of Research and Development