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Motivation: major exposure location

* Time spent indoors

* Close proximity to source emissions we generate through activities

Limited ventilation

* A complex and evolving mix of chemicals, from: human activities
consumer products
building materials
chemical reactions
biological processes
outdoor air

Unfortunately, one challenge is
proprietary information about
products

Why Indoor Chemistry Matters, NAS (2022)
and references therein



Types of sources:

Primary - chemicals emitted directly (e.g., from cooking, volatile losses)

Secondary - emission of chemicals formed through indoor chemistry.

e.g., from oxidation of skin or surface films or gas phase

Sources to indoor air

Sources to outdoor air



Chemicals with higher indoor concentrations

have indoor sources

VOCs:
TEAM Study e.g., Wallace et al., Atmos Environ. 1985
NHANES Su et al, Atmos. Environ., 2012
RIOPA Study Su et al., Environ. Res. 2013



Chemicals with elevated indoor concentrations: WSOCg
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Value of species mass balance in identifying what is missing

and do we understand the big picture
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Value of real time measurements in locating (identifying) sources

Cooking events: eggs and bacon
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Locating sources

Real time mass spectral methods promising for emissions measurements
even for low concentration species
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Organic PM, < twice as high indoors

RIOPA PM, . Elizabeth, NJ, USA
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Indoor-generated PM, : is largely organic
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Potential implications (example)

Example:

Emitted organic PM could be a vehicle for
transport of reactive or toxic chemicals,
to the lower lung or to outdoor air.

 PAHs: Carbonaceous PM enhances partitioning of PAHs to particle
phase Naumova et al., Atmos. Environ. 2003

* Does this effect exposure and dose of aerosol-associated ROS or toxic
chemicals (e.g. PFAS) to the lungs or to outdoor air?



Ammonia: indoor/outdoor > 10 in homes

Ampollini, DeCarlo et al (HomeChem) ES&T 2019
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Potential implications

Indoors (30 to >1000 ppb); outdoors (1-5 ppb)

NH;® T NH; * Many known indoor sources
0 ' '
I - cetic acid (e.g. people, cleaning products, cooking)
OH * Water soluble base
T pH W * Increases pH in surface reservoirs
\ | .. ) . .
—— |M| nicotine e Alters air concentrations of acids, bases

Ampollini, ES&T 2019,
Ongwandee & Morrison, ES&T 2008; Healthy Build 2006

Limited quantitative understanding of the impact of NH; on indoor air
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Per- and polyfluoroalkyl substances are elevated indoors
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PFAS: Many potential indoor sources, but which dominate?

Used because of water, stain, and heat resistant properties
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Photo Credit: https://www.sixclasses.org/videos/pfas

Challenges of evolving and
proprietary product formulas,

Some of >10,000 PFAS species
have been measured in many
products

What are the major sources to
indoor air?

What influences partitioning?

What processes and pathways
drive indoor concentrations,
exposures and emissions to
outdoor air?
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Surfaces can have a large impact on air concentrations

Large loss of WS gases to AC system; Rapid rebound from building reservoirs

Organic acids (CIMS)
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Indoor surfaces, surface soiling and surface associated water

provide sinks/reservoirs and also sources of primary/secondary

PFAS
Higher surface-to-volume ratios indoors (FTOHSs, FOSEs)

Indoors: >3 m2/m3 /
Outdoors: < 0.01 m%/m3 ‘
61?‘0 1609\ ?‘OY\ YOSP %05& %05&

Singer et al. 2007
Morrison & Nazaroff, 2000 Eichler, et al., ES&T, 2023

Surface reservoirs prolong residence time of chemicals indoors — time for reaction

Strongest evidence for production (emission), is for ozone oxidation products

Why Indoor Chemistry Matters, NAS (2022)
and references therein

Soiling/Water alter partitioning. Their role in chemistry is incompletely understood.
Photosensitized reactions on soiled windows? Acid/base, hydrolysis, oxidation...
What are the secondary air emissions of volatile/semi-volatile products?




Potential for real-time mass spectral methods to measure emission rates

with excellent sensitivity
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An iterative process

* Hypothesis-building field campaigns
in real buildings

* Controlled experiments, perturbation
experiments, emissions
measurements with some level of

_ EE authentic complexity

Model development and model-
driven measurements

=
E ! E A| * Field campaigns designed to test

E ' physical/chemical understanding in
” models




Buildings are a source of chemicals to outdoor environment

Example: Volatile Chemical Products (VCP)

McDonald et al., Science 2018 +Oy PFAAs
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Eichler et al., in preparation

Chang et al., submitted 20



PFAS emissions from homes by ventilation: neutral > ionic

IPA Campaign: 10 NC homes

9 neutral PFAS 26 ionic PFAS
~ 39 mg yrl ~0.02 mg yrt

One home

Neutral PFAS are:

* byproducts of manufacturing

* rarely reported by manufacturing facilities.

* likely have emissions from consumer materials and products (based on above)

* thus, could be a major largely unmeasured source of PFAS from manufacturing facilities

Eichler et al., in preparation
Chang et al., submitted 21



Neutral PFAS removal from homes: ventilation dominates over dust

IPA Campaign: 10 NC homes

1.4%

m Ventilation, gas-phase
m Ventilation, particle-phase
® Dust removal

Dust removal < 0.1% of
6:2 FTOH MeFOSE removal by ventilation
for 9 neutral PFAS

Eichler, Turpin, et al., in preparation 2



PFAS emissions from single-family, detached homes

> In Raleigh metropolitan, NC: ~0.33 M homes s mt | w = ~13 kg/year
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> Only 9 out of >10,000 PFAS

»PFAS manufacturing: generally does not report these compounds

total reported : ~109,393 kg/year total (mostly short chain ionic PFAS);
~19,700 kg/year long chain

a mass balance on total orgF would help understand the true impact

Eichler, Turpin, et al., in preparation =



Summarizing Opportunities and Needs

Progress in understanding drivers of chemical dynamics

Progress developing tools, methods

Developing a quantitative, actionable understanding of indoor
environment benefits from an iterative process

Test understanding with models in realistic settings

|dentify of sources, emission rates to test our understanding with models
under realistically-complex environments

What are we missing? Mass balance? Surface-associated oxidants,
Secondary sources?

Impacts on outdoor air?



Summarizing Opportunities and Needs

 Anindoor challenge: complexity, heterogeneity

 Anindoor advantage: can manipulate the system, while embracing
complexity

* A challenge: proprietary and evolving chemical mixtures in products



Extra Slides
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Indoor Challenges (homes)

Every indoor environment is different
And many buildings are exposure environments for only
a few people



Challenges: every home is different

Population-based sampling (sensors, passive, other)
Convenience sample — with purposeful variations

to understand determinants (RIOPA example)
Intensive sampling in single home, benchmarking
Purposeful manipulation, controlled experiments
Sampling for model testing

Medians and extremes



Summarizing Opportunities

Every indoor environment is different
Population-based sampling; benchmarking; identifying
critical factors; median and outliers

Loss processes of comparable timescale
Building manipulation to isolate a process
Real time measurements

Chemistry
observations in authentic buildings
hypotheses and model testing
Controlled experiments (e.g. with authentic surfaces)

Characterization of indoor surfaces
Continued characterization; thermodynamic modeling;
surface/multiphase chemistry



Benchmarking
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