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Indoor Chemistry is Contextually Driven

* In different buildings and in the same building over time...

» Sources and reservoirs will lead to different concentrations, and partitioning
behaviour

e Chemical transformations will be different
* Control and management of chemicals will have a different effect
* Exposure to chemicals will be different
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Indoor Chemistry

* What are some important building “systems” and how are they
important to indoor chemistry?

* How can they be characterized/measured?
* How does building science tie to the recommendations in the report?



To understand/manage indoor chemistry, you
need to understand the building

Ventilation Surfaces (seen HVAC
and Air Flow and unseen) Systems

People/behaviour, microorganisms, energy and moisture flows, etc. etc.



Ventilation 101

Mechanical Ventilation (fan-driven)

!'* e Can be exhaust, supply, or balanced
e Can be integrated with HVAC
e Can be user controlled or scheduled

e Can be intentional (natural ventilation)
* Depends on pressures caused by wind,
stack effect, and HVAC

In general, ventilation increases the indoor
concentration of outdoor compounds and
decreases the concentration of indoor compounds
Time scale for ventilation is crucial to indoor

Image: https://www.bpcventilation.com/blog/what-is-a-mechanical-ventilation-system/ C h e m ist ry




Distribution of Air Exchange Rates (logarithms)
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The infiltration AER obtained with the proposed method from the data acquired during the
first measurement phase. Shaded areas identify night periods (20:00 to 07:00).
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Ventilation Summary

 Ventilation is usually important for indoor chemistry, particularly when

* Ventilation time scales are long

* You are assessing indoor sources/reactions by assessing concentrations
* Indoor chemistry is dependent on outdoor concentrations
* You are controlling products of indoor chemistry or sources

* You are considering control approaches

 Ventilation is dynamic and has multiple pathways
e Assessments need to be continuous

* Impact on indoor compounds can be complicated by
processes that happen while ventilation occurs
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Ventilation 201

* Air movement within and between building zones/rooms is often

iImportant too
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Surfaces 101

 Surfaces are enormously important to many aspects of indoor
chemistry

e Surface area/volume ratios of 1-4/m in indoor environments

 Surfaces have two components
* Substrate: Changes slowly compared to many indoor chemical processes

* Patina/coating/layer: Changes over variable time scales & prior history is
relevant




Unseen Surfaces
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Image: jadelearning.com/

e Clean surface area to
volume ratios
e Ducts (~1-10/m)

* Heat exchangers
(100-1000/m)

* HVAC filter (~100/m)

Images: https://www.pickhvac.com,
https://www.dh-ts.com,
https://www.captiveaire.com



Measurement of Surfaces

* In processes where surfaces are important
* Consider physical and/or biological as well as chemical characterization

* Role of water (and particularly adsorbed water)

. Con5|der hlstory of surfaces

https://www.reddit.com/r/Mold/comments/skry8
k/is_this_mold_on_the_popcorn_ceiling/
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HVAC 101 o e
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Table 1. Emission sources and problems identified in HVAC systems

SOURCES AND PROBLEMS TYPICAL EXAMPLES

Intrinsic emission sources

1. Seals, caulks, adhesives ouigassing of VOCs, deterioration

2. Fibers asbestos, fiber shedding

3. Metal degradation products deterioration and entrainment of coatings, platings, metal surfaces

4. Lubricating oils, etc. fans, motors in the air stream

5. Ozone release by electrostatic air cleaners

Emission sources resulting from contamination

1. Dust construction matenal, skin cells, cte., with accumulation possibly lcading
to microbial contamination, VOC sorption-desorption, and low flows

2. Other organic debris leaves, bird droppings

3. Growth of microorganisms growth and aerosolization of bioaerosols and VOCs from micro-organisms

at sifes including: cooling coils, drain pans, drains, traps and sumps, fil-
ters, insulation, duct surfaces, plenums, humidifiers and evaporative
coolers, cooling towers

4. VOC sinks filters, sound absorbers, msulation matenials, deposited dust
5. Cleaning compounds and biocides biocides, disinfectants, deodonzers
6. Boiler steam anticorrosives, biocides, shmicides, oxygen-scavenging or filming chemi-

cals, anticorrosives, pH control neutralizers
Design/operational effects on IAQ

1. Entrainment and re-entrainment leaks, polluted outside air, building exhaust

2. Rotary heat exchangers sorption-desorption of VOCs

3. Building pressurization intake of polluted outside air

4. Transport odor, VOC and particle migration

5. Climate control high humidity

6. Ventilation and air exchange inadequate dilution of mnternal sources, inadequate outside air

Table 3. Emission rabes of total valatile organic compounds (TWOC] and aldehydes from duct components afier exposure fo czone for 24 i

Emission Rate (pgm™ hr'")* Ozone (pph)
Material VDG HCHO [‘.‘HJ}HU Acetone [:5-['; " Aldehydes Inlet Chamber/Outlet
HOoL2 550 b a 166 380 110 T2s12
MOL3 b ] b b b 140 N:B
Neaprene pasket G400 b b 120 330 140 65:8
duct sealant 4000 24 250 b B 100 27+15

Batterman and Burge (1995)
HVAC&R Res.

Morrison et al.
(1998) JAWMA



Recirculation Rate (h)

N

Recirculation: Building volumes that pass through system
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HVAC chemistry

* Degree of connection between
HVAC surfaces and indoor air

* Removal by filter/air cleaner
 Distribution and air mixing
* Dilution of indoor sources

* Chemistry at extreme conditions
* Heat, liquid water, UV lamps
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Outdoor Air: Fraction/amount of outside
air entering through mechanlcal ventilation

Mechanical Airflow Rate [cfim]
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Table 1
Summary of direct approaches to measure system runtime.
# Measurement Parameter Approximate Cost (USD $) Reference
1 Motor magnetic field 100-180 [71
2 Pressure 300-500 -
3 Current or power 100-300 [8,10]
4 Modified current or power” 200-600 [9,13]
5 Smart thermostat records 200-300 [11]

Outdoor Temperature (°C)

Data from: Touchie and Siegel (2018) Indoor Air

@ The modified method uses current or power transducers on both the fan

and on the compressor.

Li et al. (2019) Bldg Environ

* Every HVAC impact on indoor
chemistry is tied to runtime
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Indoor Chemistry Matters

* 11 Recommendations include researchers
* Characterizing the building is often needed to fully contextualize chemistry

* Characterizing the building allows for generalization of results to other indoor
environments
* Extreme environments are common in buildings

* James Scott: “...few places on earth get as hot as a rooftop or as dry as the corner of a
heated living room.” Wired 2011

* Does this lead to extreme chemistry?

Building Aware Indoor Chemistry Research




Indoor Chemistry Matters

* Three recommendations include funders/funding agencies
e Consider characterization of the building in program design/granting

 Many measurements/measurement approaches can be collected with low-
cost sensors or involve analysis of existing data

* Two recommendations involve building design/standardization and
two highlight the importance of interdisciplinary collaborations

* Indoor chemistry’s impact on other fields will come from adopting language
and valuing contribution of other fields



Indoor Chemistry Matters
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