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Tracking the Seismic Crisis in Oklahoma
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Oil Production and Wastewater Disposal

—_— —>

SEALING LAYER
PRODUCTION FORMATION

SEALING LAYER
DISPOSAL FORMATION

CRYSTALLINE BASEMENT

y =

-

Rubinstein and Mahani (2015)



USGS Induced Seismicity Project Objectives:

* Understand and mitigate the hazards associated with
earthquakes that are induced by human activities.

* Explore the physics of earthquake failure.
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Direct application of science to \
reduce hazard
|dentification of risk factors for IS
Inform regulations
Short-term hazard forecasts
Injection protocols

Risks of sudden shut-in versus flowback/

/ Basic earthquake science \

Conditions and stress changes that lead
to fault slip

What causes ruptures to start and stop
Role of fluids in triggering slip

Ground motion variability
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Short-term (one-year) Hazard Forecasts
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Sources Within Zones of Induced Seismicity

Level 1. Catalog, Fault Sources, and Area Sources

Declustered catalog with b-value equal to 1 and a minimum of adjusted moment magnitude 2,7; Central and Eastern United States faults
and area sources are from the 2014 National Seismic Hazard Model Peterson and others, 2014).
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Level 2. Classification of Earthquakes

Informed Model: ' The zones of induced seismicity have
special treatment for Mmax and GMMs.

//\

T~
Adaptive Model:” Earthquakes are treated uniformly inside
and outside of the zones; the maximum earthquake rate is used.
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Chance of potentially minor-damage ground shaking
from an earthquake
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2018 forecast shows greater
potential for minor-damage
ground shaking than in
previous years despite
declining seismicity rates
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Known Issues with One-Year Forecasts:

* Appropriate GR relation: What is b-value? What is M__,? What (if
any) declustering is appropriate?

* Are ground motions values for induced earthquakes different than
tectonic earthquakes?

* How can we use physics-based approaches that account for injection?

* Are the products effective for end-users?



OK-KS, NSHM catalog, M>3
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Phy5|cs-Based Forecasting Hazard Forecast Based on Injection Rates

2. Use rate-and-state friction to determine seismicity
rate transients
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Accuracy of Forecasts:

USGS current
best-practice
0 ] . . ..
~ W Calibrated statistical
(g model
m N e W 2004 2006 2008 2010 2012 2014 2016
= g" ~ Oklahoma Cit;
g model iNE y
T@ ;;/0.5
E {éu.x
E‘ éuz
Z E - n.g(;(ll 2006 2008 2010 2012 2014 2016
107 — . . .
Base case USGS one-year Empirical Hydromechanical W
(random) model hazard model model model

Norbeck and Rubinstein (2018)



Ground Motion Prediction Equations for Injection-Induced Events

Ground motions from induced events are
not well modeled by current tectonic
GMPEs.

CEUS GMPEs over-predict ground motion at O

short periods (T ~ 0.1 s) and under-predict
observations at longer periods (T > 3 s)

Short period between-event terms
consistent with with increasing stress ,
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parameter/stress drop for earthquakes up 101
to M5 (also observed in stress drop studies).
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Use of One-Year Forecasts

Release of each one-year forecast is widely Oklahoma Is One Of 2017's Most High-Risk

covered by media State For Earthquakes

‘ u s A TOD AY US. World Opinion Politics Entertainment Business Lifestyle TV Radio More :

3 million Americans at risk from human-induced

earthquakes this year

: e Federal 2017 quake forecast
highlights Oklahoma, California

... but, examples of specific use cases where maps changed behavior or outcomes is lacking.

How do we assess the impact of one-year forecasts?
Do we need to improve usability?
* Are different product(s) needed?



On-going Research on Seismicity Related to Oil and

Gas Production

* Improved detection and characterization of
earthquakes in CEUS:

Matched-filter catalog for OK and KS and fault
identification (Skoumal et al., in review)

Low-stress drops of induced events (Boyd et al.,
2017; Sumy et al., 2017; Trugman et al., 2017)

Different evolutionary characteristics of
sequences near wells (Cochran et al., 2018)

Large-N array deployment to map spatio-
temporal evolution of seismicity (Dougherty et
al., in prep)

Stress orientations and magnitudes in areas of
injection (Cochran et al., in prep)
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Influence of poroelastic stresses on

On-going Re§earch on Seismicity Related to Oil and 2016 M5.8 Pawnee
Gas Production @
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e Coupled fluid flow and poroelastic stress 1

* Anisotropic permeability to account for preferred
fracture orientation
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Science and hazard of induced seismicity from other causes:

* Hydraulic fracturing
* 90%+ of earthquakes in some Oklahoma Counties due to hydraulic
fracturing
 Geothermal/Enhanced Geothermal
 Deformation and seismicity near Coso, Salton Sea, and other
geothermal fields
* DOE Frontier Observatory for Research in Geothermal Energy
(FORGE)
* CO, sequestration
* Seismicity at Decatur injection site
e Other: reservoir induced events, etc.



Can we better communication of research/hazard findings?

How can we better understand and meet user needs?

Potential users and stakeholders:

* Federal and state government reqgulatory agencies (EPA, Oklahoma Corporation
Commission, Texas Railroad Commission, etc.)

 Industry and federal agencies —inform best-practices/protocols for reducing risk
of seismic events

* Insurance -response to short-term variability in seismic hazard

* Public and other sectors — understand hazard exposure



