

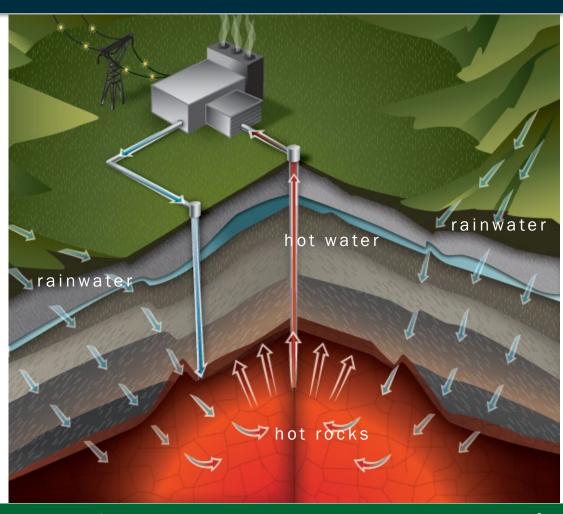
Induced Seismicity Mitigation in Enhanced Geothermal Systems

Lauren Boyd

Geothermal Technologies Office
Office of Energy efficiency and Renewable Energy
U.S. Department of Energy

Conventional Geothermal Resources:

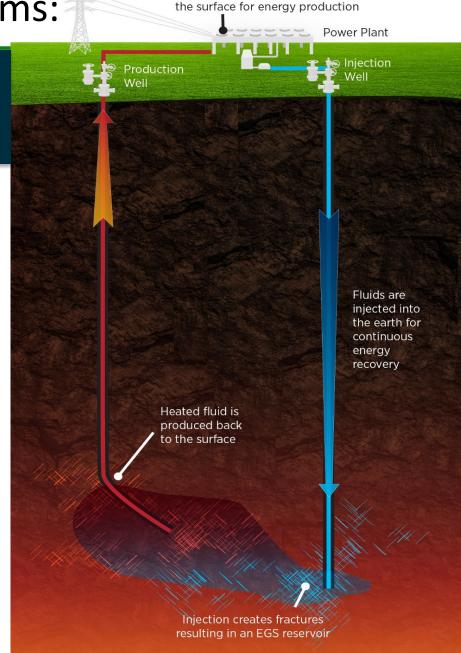
How do they work?


A geothermal resource requires **fluid**, **heat**, and **permeability** to generate electricity. Conventional hydrothermal resources contain all three components naturally.

Elevated temperatures may exist in the subsurface, but insufficient fluid and/or flow pathways "strand" this heat resource.

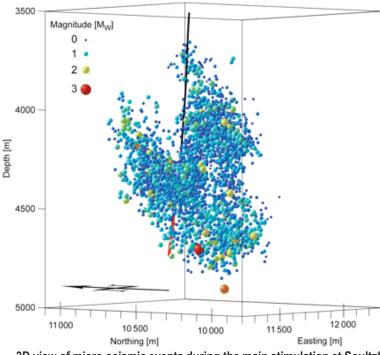
Stranded Heat:

An Opportunity



Enhanced Geothermal Systems:

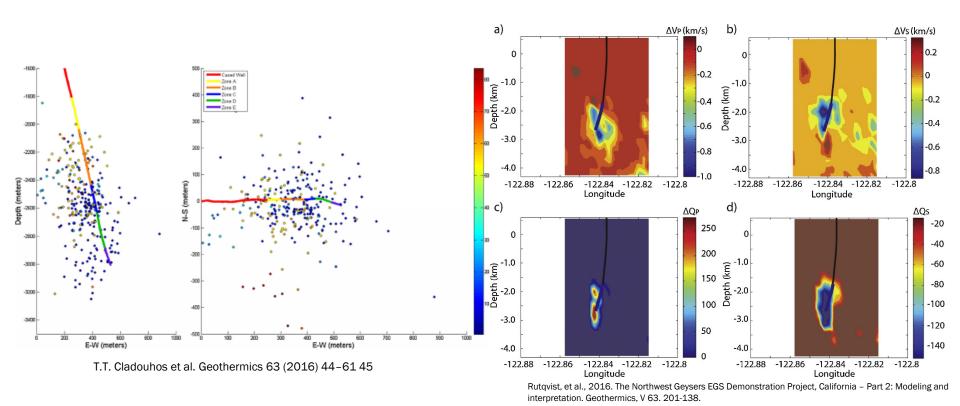
EGS: Manmade geothermal systems harnessing Stranded Heat


- EGS offer the opportunity to access 100-5000 GWe (USGS, NREL) of EGS resource by engineering fracture networks in accessible hot rock.
- Water is injected at pressure, to enhance permeability, and circulated to harness energy in the form of heat.
- Heated water is pumped to the surface to generate electricity.

Heated fluids are recovered at

Induced Seismicity in Geothermal Development

- Recognized and studied for more than 100 years
- Fundamental causes are well understood:
 - Changes in pore pressure (effective stress changes)
 - Thermal stress
 - Volume change total balance of fluid
 - Chemical alteration of slip surfaces


3D view of micro-seismic events during the main stimulation at Soultz*

Dyer, B.C, T. Spillman, U. Schen, F. Ladner, and M. O. Haring. 2008. Microseismic imaging of a geothermal reservoir stimulation. The Leading Edge. V. 27, no. 7, p. 856-869

- Can be controlled and managed by:
 - understanding the mechanisms
 - diligent monitoring of operations, seismicity and ground shaking
 - establishing a plan in advance to ramp-down or stop activities

Majer et. al, (2012). Protocol for Addressing Induced Seismicity Associated with EGS

EGS needs microseismicity

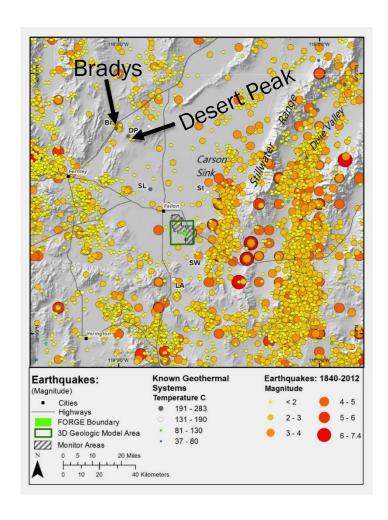
Induced Seismicity and Geothermal Development

 The success of EGS technologies will depend on the ability to successfully inject/withdraw fluids in high volumes

Communications challenges:

Public, economic and regulatory concerns can delay and possibly cancel projects

- High-profile press coverage
- Risk must be assessed properly and technically:
 - Public assurance and trust
 - Industry confidence
 - Facilitates further development


U.S. EGS Geothermal Projects

Desert Peak

- 2 years of seismic monitoring before EGS injection
- Largest event in 2 years = M 1.7
- Largest EGS injection-induced eventM 1.0

Bradys Hot Springs

- 3 years of seismic monitoring before EGS injection
- Largest event in 3 years = M 2.0
- No detectable events during EGS injection

Main Challenges

- How to regulate/manage/mitigate a process that:
 - Is often (always?) site specific
 - Often has unknown or "fuzzy" boundary conditions
 - Frequent lack of subsurface data
 - Has a variety of stakeholders (some hostile)
 - Upsetting but not necessarily high risk
 - May occur in areas of no measured historical seismicity
 - Is rate/pressure dependent (non stationary)
 - Still under study by the research community

Developing an EGS Protocol

- Continuation of 2004-2006 process
 - Draft LBNL internal whitepaper (2004)
 - Three international workshops (2005-2006)
- Form technical basis for understanding induced seismicity and a strategy for developing a protocol
- International group of experts gathered to identify critical issues (technical and non technical) associated with EGS induced seismicity
- Peer reviewed white paper (IEA Report, Majer et al., 2007)
- Protocol for the development of geothermal sites and a Best Practice guide (IEA Report, Majer et al, 2009)

GEOTHERMICS

Geothermics 36 (2007) 185-222

www.elsevier.com/locate/geothermics

Induced seismicity associated with Enhanced Geothermal Systems

Ernest L. Majer^{a,*}, Roy Baria^b, Mitch Stark^c, Stephen Oates^d, Julian Bommer^c, Bill Smith^f, Hiroshi Asanuma^g

* Lawrence Berkeley National Laboratory, #1 Cyclotron Road, MS 90-R1116, Berkeley, CA 94720, USA
b MIL-TECH UK Ltd., 62 Rosewood Way, West End, Woking, Surrey GU24 9PF, UK
Calpine Corp., 10330 Socrates Mine Road, Middletown, CA 95-861, USA
d Shell International Exploration and Production, Kesslerpark 1, 2288-GS Rijswijk-ZH, The Netherlands
Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
i Northern California Power Agency, Middletown, P.O. Box 663, Middletown, CA 93-661, USA
8 Gradhate School of Environmental Studies, Tohoku University, 980-8579 Sendal, Japan

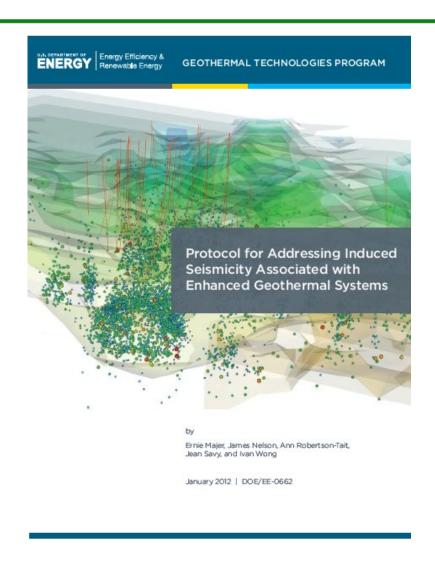
Received 21 September 2006; accepted 20 March 2007

Available online 3 May 2007

Abstract

Enhanced Geothermal Systems (EGS) have the potential to make a significant contribution to the world energy inventory. One controversial issue associated with EGS, however, is the impact of induced seismicity or microseismicity, which has been the cause of delays and threatened cancellation of at least two EGS projects worldwide. Although microseismicity has in fact had few (or no) adverse physical effects on operations or on surrounding communities, there remains public concern over the amount and magnitude of the seismicity associated with current and future EGS operations. The primary objectives of this paper are to present an up-to-date review of what is already known about the seismicity induced during the creation and operation of EGS, and of the gaps in our knowledge that, once addressed, should lead to an improved understanding of the mechanisms generating the events. Several case histories also illustrate a number of technical and public acceptance issues. We conclude that EGS-induced seismicity need not pose a threat to the development of goothermal energy resources if site selection is carried out properly, community issues are handled adequately and operators understand the underlying mechanisms causing the events. Induced seismicity could indeed prove beneficial, in that it can be used to monitor the effectiveness of EGS operations and shed light on geothermal reservoir processes.

© 2007 CNR. Published by Elsevier Ltd. All rights reserved.


Keywords: Induced seismicity; Enhanced Geothermal Systems (EGS); The Geysers; Cooper Basin; Berlín; Soultz-sous-

Majer, E.L, Baria , R., Stark, M., Oates, S., Bommer, J., Smith, B., and Asanuma, H., 2007, Induced seismicity associated with Enhanced Geothermal Systems, Geothermics 36, 185-227. LBNL- 61681

Majer, E., Baria, R. and Stark, M., 2009. Protocol for induced seismicity associated with enhanced geothermal systems. Report produced in Task D Annex I (2008), International Energy Agency-Geothermal Implementing Agreement (incorporating comments by: C. Bromley, W. Cumming, A. Jelacic and L. Rybach).

Developing an EGS Protocol, 2012

- Funded by US Department of Energy
- Used by domestic and international businesses to guide their approach to induced seismicity associated with EGS projects
- Required for all Federally funded EGS projects
- Cited as the only existing IS protocol, which could "serve as a template for other technologies" by NRC, 2012 "Induced Seismicity Potential in Energy Technologies" Report
- Adopted by 17 countries
- Accepted by Oil and Gas industry for induced seismicity control
- Adopted for deep underground CO₂ sequestration

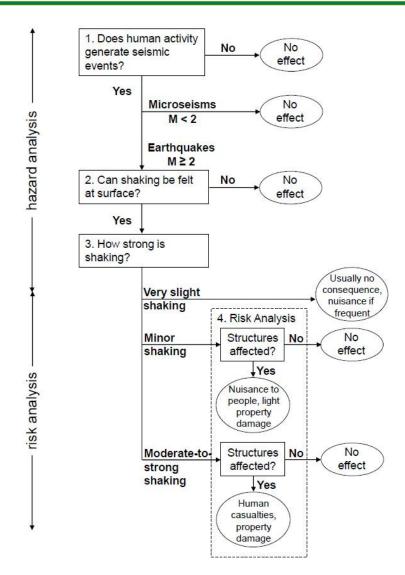
Protocol: http://esd1.lbl.gov/files/research/projects/induced_seismicity/egs/EGS-IS-Protocol-Final-Draft-20120124.PDF
Best Practices: https://escholarship.org/uc/item/3446g9cf

Developing a U.S. Protocol

Two main elements:

- Technical
 - Identify and understand factors controlling microseismicity
 - Effect of microseismicity on community and operations
- Legal Community interaction
 - Propose guidelines for a geothermal developer to deal with the issue of induced seismicity.
 - Inform and interact with the community to understand their concerns and partner with them to achieve a win-win situation

"One size" does not fit all – not a regulatory document

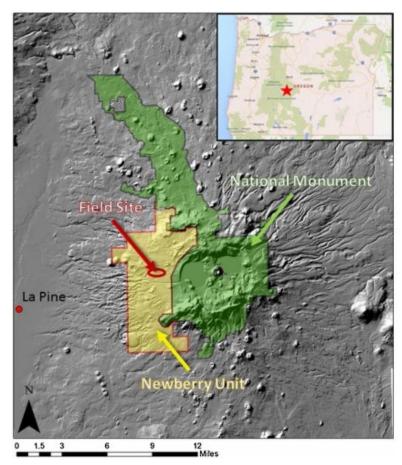

Ground Motion as an Indicator

Impact	Maximum Velocity	Acceleration	Section
Bridges, Reinforced	125 mm/sec PGV	0.2 g PGA	3.3, 3.4
concrete structures			
Building Damage	12.5 mm/sec PGV	0.02 g PGA	3.2
Human Disturbance	0.1 mm/sec RMS (1-sec)	0.00036 g RMS (1-sec)	3.6
	0.4 mm/sec PGV		
Hospital laboratories, wet	0.05 mm/sec RMS	0.00018 g RMS (1-sec)	3.7
chemistry laboratories	(1-sec)		
MRIs, scanning electron	0.0063 mm/sec RMS	0.0005 g PGA	3.7
micro-scopes	(1-sec)		
Semiconductor	32 mm/sec RMS (1-sec)	10 micro-g RMS	3.7
manufacturing, research		(1-sec)	
laboratories, scanning			
transmission electron			
microscopes			

- The amount of perceived shaking depends on
 - The size of the earthquake (Richter magnitude)
 - Distance from the earthquake

Determining Acceptable Seismic Risk from a Geothermal Injection?

- Depends Upon:
 - What the maximum as well as cumulative "shaking" will be.
 - Will this shaking be acceptable to the public?
 - Will this shaking be below the "damage" threshold for structures with interest?


National Research Council. (2013). Induced seismicity potential in energy technologies. 10.17226/13355.

U.S. Induced Seismicity Protocol for EGS: 7 Steps

- Perform a preliminary screening evaluation
- Implement an outreach and communication program
- 3 Identify limits for ground vibration and noise
- Monitor seismicity and ground motions
- Quantify the hazard from natural and induced seismic events
- 6 Characterize the risk from induced seismic events
- 7 Develop risk-based mitigation plans

Case Study: EGS Demonstration Newberry Volcano, OR

- DOE Funded EGS demonstration project
 - 0 2010-2015
- Goals:
 - Demonstrate the development and operation of an Engineered
 Geothermal System
 - Create EGS reservoir around existing well NWG 55-29.
 - Stimulate multiple fracture zones using diverter technology.
 - Drill production well into mapped fracture network.
 - Complete Circulation Test of producer and injector.

Map of Project Site and the Davenport Newberry Unit Area. The Unit Area comprises Federal geothermal leases administered by the BLM with Davenport Newberry Holdings, LLC designated as the Unit operator for the purposes of exploration, development and operations

T.T. Cladouhos et al. Geothermics 63 (2016) 44-61 45

U.S. Induced Seismicity Protocol for EGS: 7 Steps

1

Perform a preliminary screening evaluation

- Review relevant federal, state, and local laws and regulations.
- Determine the radius of influence within which there could be a negative impact.
- Identify potential impacts, including: physical damages, social disturbances, nuisance, economic disruption, and environmental impacts.
- Establish an approximate lower and upper bound of potential damage
- Classify the overall risk as one of the four described categories

(2

Implement an outreach and communication program

- Evaluate outreach needs
- Develop plans to approach community, stakeholders, regulators, and public safety officials.
- Develop a public relations plan to generate interest in the project from local media.
- Set up a local office in the community, ideally including technical displays for visitors.
- Initial public meeting and site visit that covers both technical and non-technical issues.
- Additional site visits during active drilling and in advance of the first stimulation.
- Etc...

Case Study: EGS Demonstration Newberry Volcano, OR

Perform a preliminary screening evaluation

- National Environmental Policy Act
- Noise Control Act, 42 U.S.C. § 4901
- Clean Water Act
- 2009 ORS Chapter 517, Mining and Mining Claims
- 2009 ORS § 540.350, Dams, Dikes and Other Hydraulic Works
- 2009 ORS Chapter 467, Noise Control
- 2009 ORS Section 197, Comprehensive Land Use Coordination
- 2009 ORS § 401.918, Emergency Management and Services, Seismic Safety Policy, Advisory Commission
- 2009 ORS § 467.120, Agricultural and Forestry Operations, Mining or Rock Processing
- 2009 ORS § 469.501, Energy Facility Siting, Construction, Operation and Retirement Standards
- Oregon Water Resources Department, Division 20, Dam Safety
- Oregon Department of Geology and Mineral Industries, Division 20, Geothermal Regulations
- Oregon Department of Geology and Mineral Regulations, Division 30, Oregon Mined Land Reclamation Act
- Oregon Department of Environmental Quality, Administrative Rules, Division 35, Noise Control Regulations
- Deschutes County Code (DCC), Chapter 8.08, Noise Control: County Noise Control Ordinances {C20}
- DCC Chapter 18: County Zoning (C20)
- DCC Chapter 23.76: County Comprehensive Plan, Energy (C20)
- City of La Pine, Comprehensive Plan, March 2010 (C20)

Implement an outreach and communication program

Phase	Туре	Audience	When	Section
Pre- stimulation	Public Outreach and Professional Meetings, Presentations, and Discussions	Public, Media, Regulators, Politicians, Other Stakeholders	> 20 since Fall 2009	3.2.1; Appendix D
Pre- stimulation	Social Media and Websites Updates	Public	Weekly	3.2.1
Pre- stimulation	Local Newspaper Notice	Public	4 weeks prior to stimulation	3.2.1
Pre- stimulation	Informational kiosks at Lava Lands and Paulina Lake Visitor Centers	Public	Summer 2011	3.2.1
Pre- stimulation	Public Outreach Meetings	Public	After release of EA for public comment	3.2.1
Stimulation	Public Outreach Meetings	Public	Monthly	3.2.2
Stimulation	Social Media and Websites Updates	Public	Weekly	3.2.2
Stimulation	Daily stimulation and seismicity reports	DOE, BLM, FS, LBNL, PNSN	Daily	4.5
Stimulation	Exception Reports	DOE, BLM, FS, LBNL, PNSN	As required by triggers	5.2
Post- stimulation	Public Outreach Meetings	Public	At end of Phase II	3.2.3

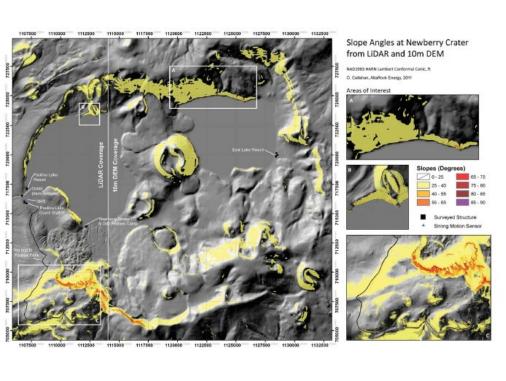
U.S. Induced Seismicity Protocol for EGS: 7 Steps

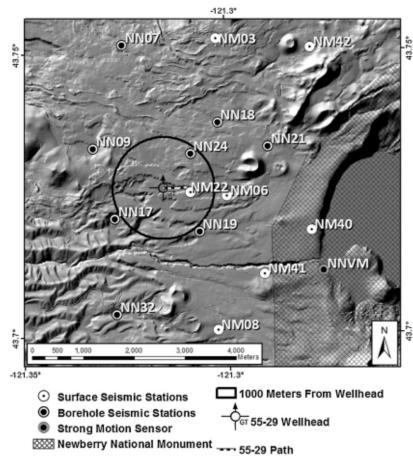
3

Identify limits for ground vibration and noise

- Assess existing seismic conditions
- Review local ordinances
- Review building threshold cosmetic damage criteria
- Review structural damage criteria
- Assess human exposure to vibration
- Assess interference with industrial and institutional land uses
- Assess ground- borne noise

Monitor seismicity and ground motions


- Collect data to characterize background seismicity and faults
- At a minimum, determine location, magnitude and source mechanisms.
- Sustained monitoring throughout the injection activity


Case Study: EGS Demonstration Newberry Volcano, OR

3 Identify limits for ground vibration and noise

Monitor seismicity and ground motions

U.S. Induced Seismicity Protocol for EGS: 7 Steps

- Quantify the hazard from natural and induced seismic events
- Estimate the Baseline Hazard from Natural Seismicity
 - o PSHA
- Estimate the Hazard from Induced Seismicity
 - Ground motion prediction model
 - DSHA

- 6 Characterize the risk from induced seismic events
 - Characterize the ground motion at each location within the area potentially impacted
 - Identify the assets that could be adversely affected and that could contribute to the total risk.
 - Characterize the damage potential (vulnerability) from the risk contributors.
 - Estimate the risk.
 - Map the results

Case Study: EGS Demonstration Newberry Volcano, OR

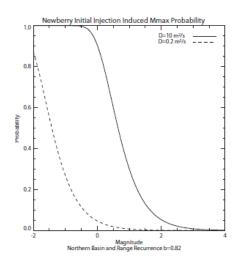

Quantify the hazard from natural and induced seismic events

Table 3-3. Summary table for the three deterministic approaches used to estimate M_{max} . Only highest M_{max} estimated by each method is shown in this table. M_{max} based on a wider range of input values shown in Appendix E.

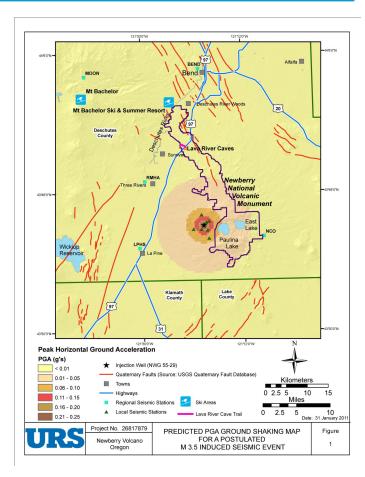
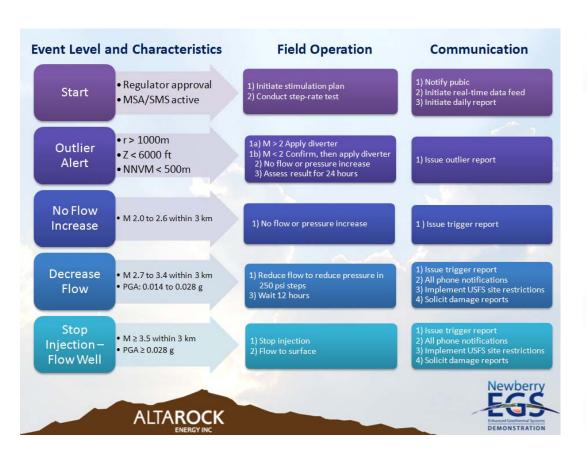
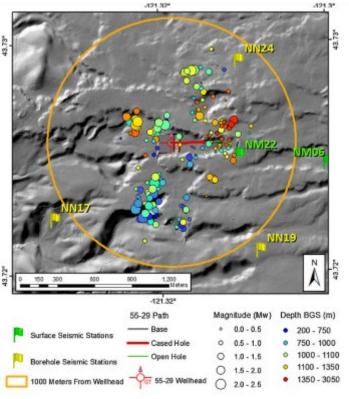

Technique	Characteristics	Highest M _{max}
Brune (1970) ¹	Dynamic stress drop, 500 m (1640 ft) radius, 3 MPa	3.89
	stress drop	
McGarr (1976) ²	Injected volume of 30,545 m³ (8 million gallons)	3.24
Leonard (2010) ³	Based on fault area 1000 m (3280 ft) strike length and	3.98
	1473 m (4833 ft) vertical extent limited by shallow	
	(3.5 km) brittle-ductile transition	

Table 3-4. Calculated Probability of Event Occurrence

Event	Event Probability			Event Probability	
Magnitude	Minimum Maximum				
>1	0.7%	40%			
>2	0.1%	6%			
>3	0.01%	0.8%			
>4	0.002%	0.09%			

U.S. Induced Seismicity Protocol for EGS: 7 Steps


Develop risk-based mitigation plans


- Direct mitigation: "traffic light" system (Bommer, 2006 & Majer et al.)
- RED—the lower bound of the red zone is the level of ground shaking at which damage to buildings in the area is expected to set in. Pumping suspended immediately.
- AMBER—the amber zone was defined by ground-motion levels at which people would be aware of the seismic activity associated with the stimulation, but damage would be unlikely. Pumping proceeds with caution, possibly at reduced flow rates, and observations are intensified.
- GREEN—the green zone was defined by levels of ground motion that are either below the threshold of
 general detectability or, at higher ground-motion levels, at occurrence rates lower than the already-established
 background activity level in the area. Pumping operations proceed as planned.
- Indirect mitigation:
 - Seismic monitoring
 - Increased outreach
 - Community support / compensation
- Liability and Insurance

Case Study: EGS Demonstration Newberry Volcano, OR

7

Develop risk-based mitigation plans

Other Existing I.S. Protocols

	Majer et al.		Dominion	Missesset	SED risk govern-
Framework	2012	2013	Bommer et al., 2015	Wiemer et al., 2015	ance workflow (Sections 6-10)
Scope	geo- thermal	geo- thermal	all induced seismicity	geother- mal	geothermal
Country of application	USA	USA	generic	Switzer- land	Switzerland
Preliminary screening	brief	detailed	-	-	detailed
Seismic hazard					
Assessment					
 Empirical seismic haz- ard study 	brief	detailed	brief	brief	brief
 Probabilistic seismic hazard study 	brief	detailed	brief	brief	brief
 Secondary hazards 	brief	brief	brief	-	brief
Management					
 Seismic monitoring 	brief	detailed	brief	brief	brief
 Magnitude-based traf- fic light systems 	brief	brief	brief	brief	brief
 Risk-based traffic light systems 	brief	brief	brief	brief	brief
 Adaptive risk-based traffic light systems 	•	-	brief	brief	brief
Seismic risk (exposure and vulne	rability of st	ructures and	d population)		
Assessment					
 Macroseisimic intensi- ty- or engineering- based risk study 	brief	detailed	detailed	-	brief
Management					
 Building monitoring 	-	detailed	brief	-	brief
 Insurance and liability 	brief	brief	brief	-	brief
 Structural retrofitting 	-	-	detailed	-	brief
 Relocation of the population 	-	-	brief	-	-

Geothermal Risk of Induced Seismicity Diagnosis (GRID)

- Trutnevyte & Wiemer (2017) → Geothermal Risk of Induced seismicity Diagnosis (GRID)
- GRID scores are:
 - derived from indicators that describe concern about seismic hazard, risk (in terms of secondary hazards, exposure and vulnerability), and social context.
 - dependent on, but not exactly proportional to, the level of seismic hazard or risk.
 - reflect the concern level rather than hazard or risk level, meaning that higher concern requires more thorough risk governance
- adopted in the Swiss "Good Practice Guide for Managing Induced Seismicity in Deep Geothermal Projects in Switzerland."

GRID Indicators

- Evaluated by at least three parties:
 - the project operator,
 - the licensing regulator/authority,
 - independent experts
- Assigned values of:
 - 0 (little concern)
 - 1 (medium concern)
 - 2 (high concern)
- The licensing authority/regulator decides final category of the project based on GRID scores

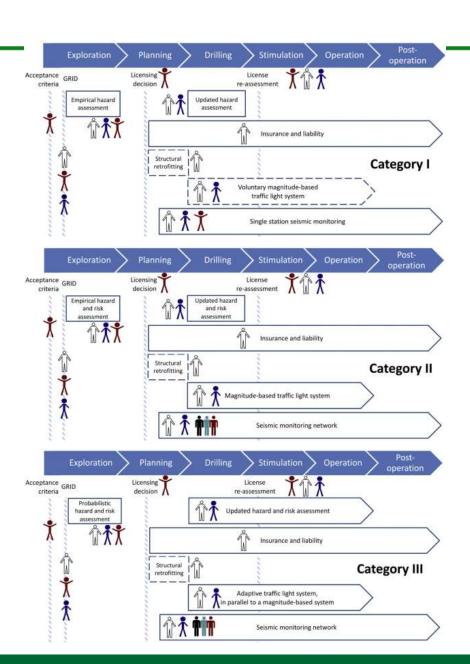
SEISMIC HAZARD CONCERN	0 (little concern)	1 (medium concern)	2 (high concern)
Depth of the reservoir	< 1 km	1 - 3 km	> 3 km
Cumulative injection volume	<1,000m³	1,000-10,000m³	>10,000m³
during stimulation			
Daily injection or extraction	<1,000m³/day injection or	1,000-10,000m³/day injection	>10,000m³/day injection or >50,000m³/day extraction
volume during operation	<5,000m³/day extraction	or 5,000-50,000m³/day extraction	extraction
Rock type	Sediments	Within 500 meters from the	Crystalline
		crystalline basement	•
Separation between back-	≤0.6 m/s² dimensioning value agd	<1.3 m/s² dimensioning value	≥1.3 m/s² dimensioning value agd from SIA
ground and induced seismici-	from SIA (2003), defined as maximum PGA on Ground Class A	agd from SIA (2003)*	(2003)*
ty	of natural seismicity with a 475-		
	year return period*		
Fluid injection pressure	<0.1MPa	0.1-1MPa	>1MPa
Distance to known and	>5 km	2-5 km	<2km
potentially active faults with			
length greater than 3 km			
CONCERN ABOUT SECOND- ARY HAZARDS, EXPOSURE			
AND VULNERABILITY	0 (little concern)	1 (medium concern)	2 (high concern)
(within a radius of 5 km)			
Local site amplification	No buildings or infrastructure on	<10% of buildings or infra-	≥10% of buildings or infrastructure on soft
(within a radius of 5 km)**	soft soils (Ground Class D, E, F in	structure on soft soils	soils (Ground Class D, E, F in SIA (2003))
	SIA (2003))	(Ground Class D, E, F in SIA (2003))	
Exposed population	Remote (<100 inhabitants)	Rural (100-20,000 inhabit-	Urban (>20,000 inhabitants)
(within a radius of 5 km)	,	ants)	,
Industrial or commercial	Low activity	Medium activity (≥1 enter-	High activity (≥5 enterprises with 100-499
activity (within a radius of 5		prise with 100-499 employ-	employees or >1 enterprise with over 500
km)		ees or ≥1 industrial installa- tion of a particular value)	employees or ≥2 industrial installation of a particular value)
Importance of buildings and	No buildings or infrastructure of	Buildings or infrastructure of	Buildings and infrastructure of Class III (SIA,
infrastructure (within a	Class II or III, as defined in SIA	Class II (SIA, 2003); no build-	2003)
radius of 5 km)	(2003)	ings or infrastructures of	
Information and the constitution	None	Class III (SIA, 2003)	2
Infrastructures with consid- erable environmental risk	None	-	One or more
(within a radius of 5 km)			
Unreinforced cultural herit-	<5% buildings listed as important	5-10% buildings listed as	>10% buildings listed as important local,
age (within a radius of 5 km)	local, regional or national herit-	important local, regional or	regional or national heritage sites; or any
	age sites	national heritage sites	buildings listed as important international
Susceptibility to secondary	Very low	Exists	heritage sites High
hazards (within a radius of 5			
km)			
SOCIAL CONCERN	0 (little concern)	1 (medium concern)	2 (high concern)
Potential for concern in the	None	Exists	Significant
general population	None	Exist	Cignificant
Vulnerable or strongly opposing stakeholders	None	EXIST	Significant
Negative experiences with	None	Exist	Significant
similar projects			
Lack of trust in the project operators or authorities	None	Exists	Significant
Benefits to the local commu-	Direct benefits with or without	Monetary compensation only	None
nity	monetary compensation	j compensation only	

GRID Categories

Category 0:

- Induced seismic hazard, risk and social concerns very low or absent
- no dedicated induced seismicity risk governance is needed.

Category I:


- Perturbations of the stress field may be expected
- damaging events are very unlikely
- no significant social concern

Category II:

- Induced seismicity is possible
- damaging events and social concern cannot be excluded

Category III:

- Induced seismicity is likely
- damaging events and significant social concerns are possible and require thorough risk governance measures
- Seismicity will certainly occur and felt events are likely

Conclusions

- Induced seismicity issues are not new in energy industries
- General causes of earthquakes related to fluid injection (e.g., EGS) are known and can be mitigated
 - Continued R&D is critical: Increased understanding of the physics of induced seismicity will enable development of more robust mitigation and control procedures
 - Large base of available technology and expertise to draw upon to address issues
- Successful utilization of induced microseismicity is critical to successful energy extraction and mitigation activities
 - Negative issues can be mitigated and the risk will be low compared to benefits
- Continue to develop and update engineering guides/protocols that identifies means to accurately assess risk and mitigate unacceptable seismicity

Supplemental Slides

EGS vs Oil and Gas / Wastewater Injection

- Advanced seismic monitoring required
- Map major faults with intention of avoiding them
- Injection and circulation to equalize pressure
- Follow the DOE Protocol to minimize and closely monitor any seismicity

	Injected Volume (gallons/minute)	No. of Wells in Target Area	Duration of Injection
Oklahoma	~800 thousand	Thousands	Years
EGS - Fallon NV	~0.8	3	Weeks/Days
Difference	1 million times less	1000 times less	10-100 times less

Enhanced Geothermal Systems

Fracture Mechanics

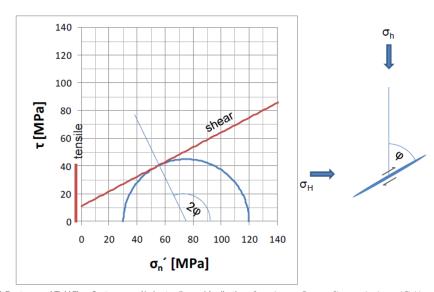
Types of Fractures relevant to EGS*:

Dilational fractures/joints:

 Two rough surfaces with normal displacement continuity (moved away from each other perpendicular to the surfaces)

Shear fractures/faults:

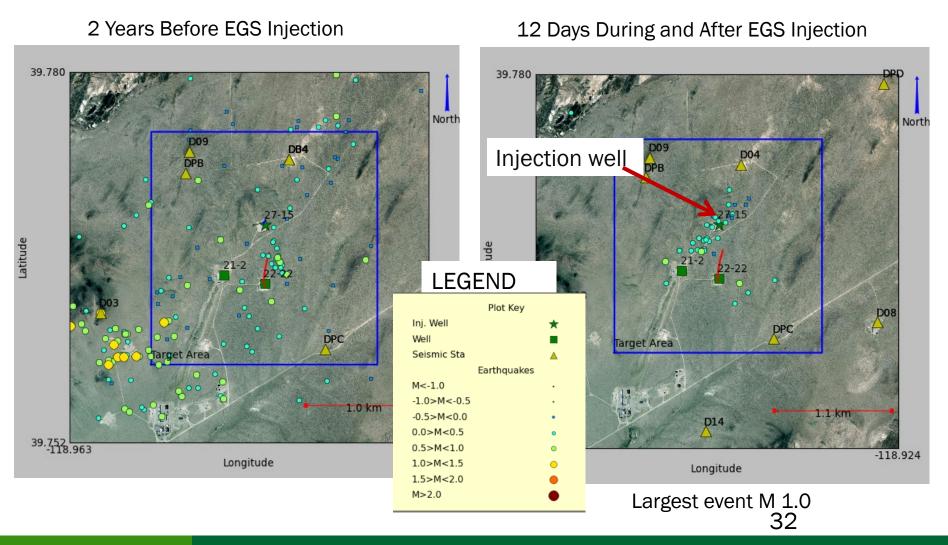
- Shear displacement continuities move parallel to each other. Relative movement is either:
 - Perpendicular to the fracture front
 - 2. Parallel to the fracture front


Mixed mode:

Combination of the above

Fracture Mechanisms:

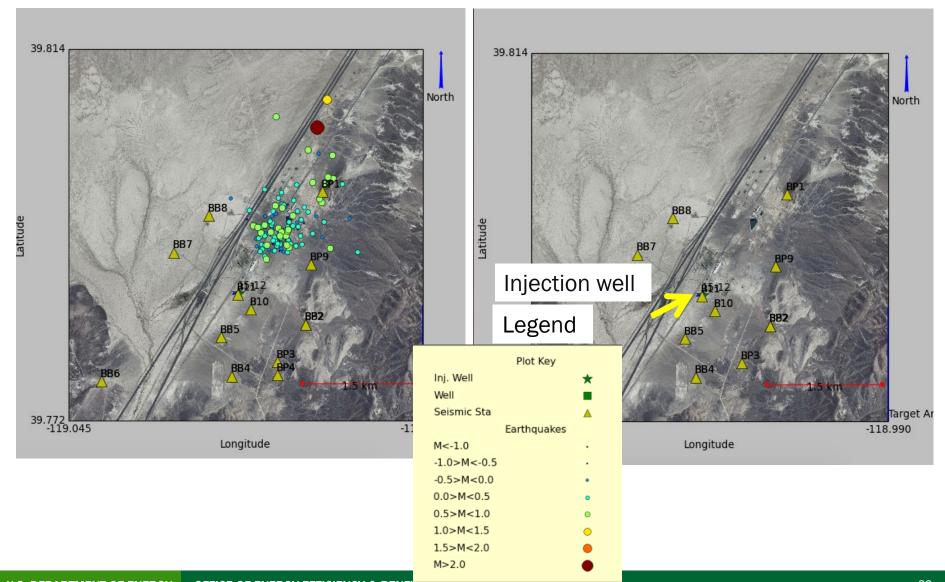
Fluid is injected into a rock mass at or below the fracture opening pressure (or minimum principal stress).


Shear deformation is induced in favorably oriented natural fractures in the rock mass → increases the permeability of the rock

^{*}Rock Fractures and Fluid Flow: Contemporary Understanding and Applications, Committee on Fracture Characterization and Flu Flow, National Research Council, ISBN: 0-309-56348-8, 568 pages, 6 x 9, (1996).

Desert Peak:

Low-Magnitude Events Between Injection and Production Wells



Brady's Hot Springs:

No Events Related to EGS Injection

3 Years Before EGS Injection

14 Days During and After EGS Injection

