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FAST: Earthquake detection by efficient
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What is Machine Learning?

Machine learning (ML)

a set of tools for extracting patterns and building predictive models from
data.

Data mining )

tools for extracting unknown patterns or
information from large data sets N
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Building models from examples (Supervised
learning)
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Finding patterns in data (Unsupervised learning)
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Deep Neural Networks (

Fast simulations & surrogate models
) Inverse problems Recurrent Neural Networks
Autoencoder Networks Ger?:realzive :
izt Convolutional Neural Networks
Lol Models Dynamic decisions
Dictionary Learning Reinforcement Artif cal Neural Networks
Learning
Feature Learning Learn joint -
orobability Support Vector Machines
Clustering & distribution Prediction Random Forests & Ensembles
Self-organizing maps Detection & classif cation Graphical Models
Sparse representation _ Determine optimal boundary Logistic Regression
Feature representation Sem!- Domain adaptation
Dimensionality reducti Supervised
mensionality reduction :
/ \_ Learning Supervised Learning )

\ Unsurpervised Learning )
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Machine learning can help geoscientists
extract more knowledge & insights
from larger data sets than ever
before.



Geoscientists have been using ML for decades.

Artificial Neural Networks Hidden Markov Models
(e.g.Dowla etal.,, 1990; Dysart& Pulli, 1990) (e.g.Ohrnberge;200 |; Beyreuther et al., 2008)
Earthquake Explosion by(oy) . ba(0y) . bs(0r)
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[Dowla et al., 1990] [Beyreuther et al.,2008]
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Recent developments have created new
opportunities for scientific discovery with ML in
solid Earth geoscience.

1) Massive geoscience data sets
2) New ML algorithms and models
3) Improvements in computing technology & tools
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Massive geoscience data sets

Long-duration continuous observations

[Smith-Konter ef a/2018]
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New ML algorithms and models

Large-scale Data Mining (FAST) Convolutional Neural Network
(ConvNetQuake)
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[Van Veen & Leijnen, 2019]
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Improvements In computing technology &
tools
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Where has ML been particularly successful?

[Treml et al. 2016] [DeepMind]

“Hey Siri....”

What can | help you with?

Structured data
* Tasks are well-defined and/or easy for humans to perform
large volumes of (high-quality) labeled data
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A blue and yellow train
traveling down train tracks.

[Google Al blog]

Image Processing language Processing Game Play
data on a grid: images sequential data: text, audio
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Data sets in solid Earth

geoscience R
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* Low signal-to-noise data
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* Heterogenous noise

* Limited or low-quality labels
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* Ground truth often

unavailable .

» Massive data sets require
scalable methods

» Modeling across multiple
ccales (spatial tembporal) «seen 1cose veeing
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Automateq prediction &
analysis

Goal: Perform a complex or repetitive task

a) challenging, tedious or infeasible for an
analyst to perform, OR

b) difficult to express as a set of explicit
commands

* ML as a tool for high accuracy predictions
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Automated data analysis

Classifying volcanic ash particles Phase-picking in seismic data
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[Shoji et al. (201 8), Scientific
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Automated prediction

Lithological mapping
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Learning to predict lithology from sparse ground-truth

measurements
[Kuhn et al., (2018),Geophysics.]
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Machine learning challenges in solid Earth
geoscience
* Dataset shift covariate shift Automation

* Biases in data collection,labeling

* Evaluating performance
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Modeling & inversion

Goal: Create a representation that captures
relationships or structure in a data set

* Learning surrogate models
* Model reduction & coarse-graining

e Intersection of ML & numerical simulations
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1D velocity model
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Modeling: Model reduction for flow in porous
medla [Valera et al. (2018),Comput.

G eosci.]

Full network model “Backbone” (reduced network model)
Discrete fracture network Subnetwork capturing flow pattern of full
network
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Machine learning challenges in solid Earth
geoscience

 Dataset shift covariate shift Automation
* Biases in data collection,labeling

* Evaluating performance

* Quantifying model uncertainty Modeling
* Physical constraints,domain knowledge

* Expense of collecting training data (from simulations)



Discovering patterns & insights

Goal: Extract new information (complex
patterns, structure, or relationships)
from scientific data sets,

especially patterns not easily

revealed
by conventional analysis technigues.

* Unsupervised learning

& e Generative models
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Discovery: finding temporal patterns among seismic
S/g na/S [Holtzman ef of. (2018), Sci.
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Discovery: /learning governing equations rrom

data [Champion ef ol (2019), PNAS]
Reaction-diffusion system
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Machine learning challenges in solid Earth
geoscience

 Dataset shift covariate shift Automation
* Biases in data collection,labeling

* Evaluating performance

* Quantifying model uncertainty Modeling
* Physical constraints,domain knowledge

* Expense of collecting training data (from simulations)

* Interested in outiers, infrequent events, unexpected patterns Discovery
* Interpolation vs. extrapolation

* Discovery often requires interpreting “black box” models
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Modeling: Representing seamount bathymetry
[Malentine ef ol (2013)]
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