Machine Learning in Seismology turning data into insights

Qingkai Kong

http://seismo.berkeley.edu/qingkaikong/

Seismological Research Letters

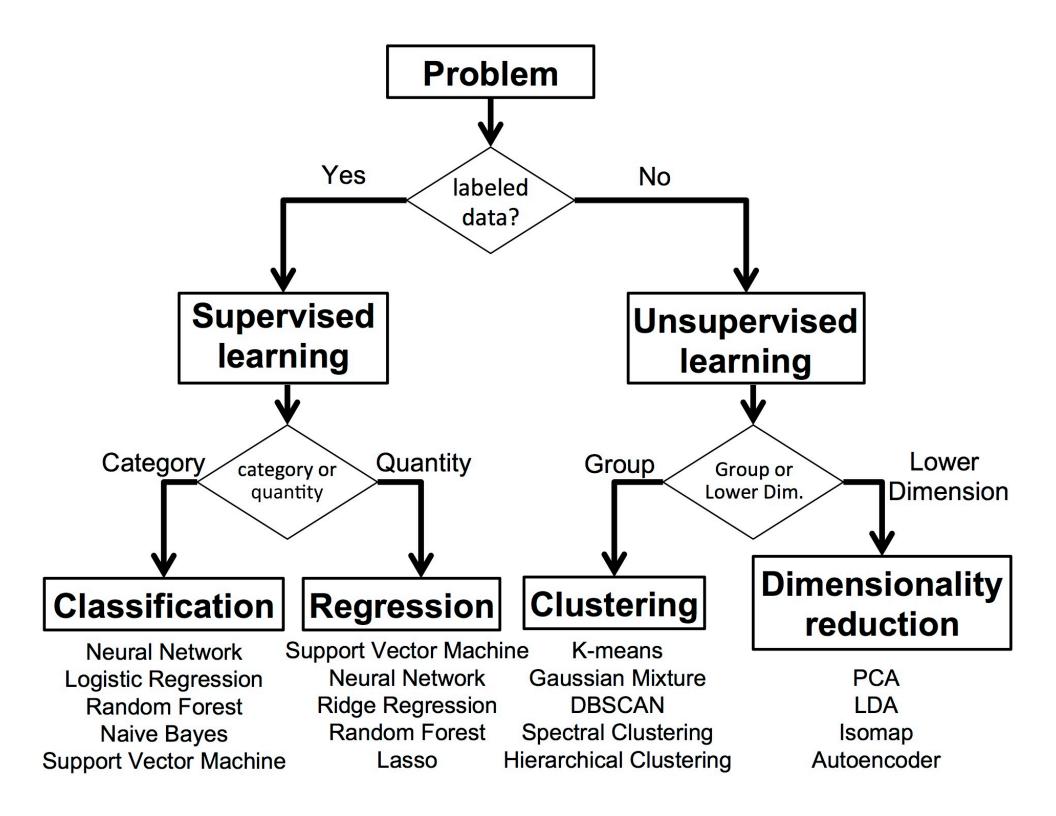
Archive Content V About The Journal V About the Society V SSA Member Sign In

REVIEW ARTICLE | NOVEMBER 14, 2018

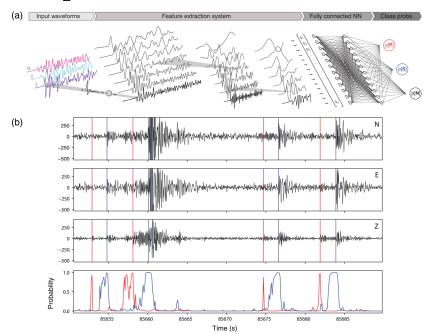
Machine Learning in Seismology: Turning Data into Insights *⊙*

Qingkai Kong; Daniel T. Trugman; Zachary E. Ross; Michael J. Bianco; Brendan J. Meade; Peter Gerstoft

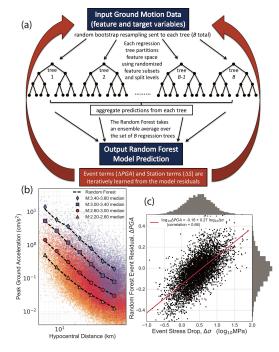
Seismological Research Letters (2018) 90 (1): 3-14.



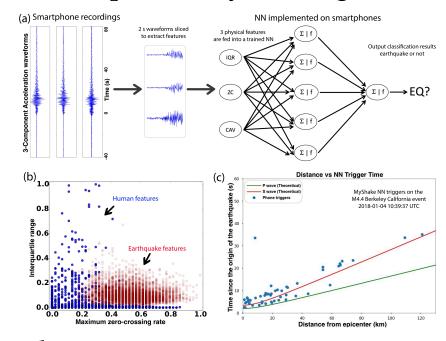
Earthquake detection



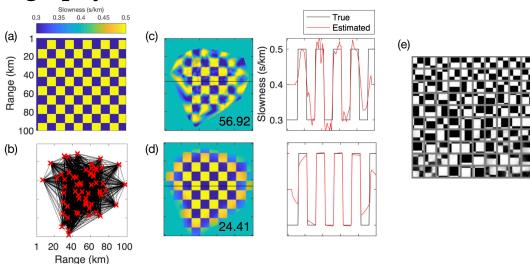
Ground motion Prediction



Earthquake Early Warning



Tomography



Earthquake geodesy and other applications

Panel 2: Next Practical Steps to Accelerate and Broaden Use of ML in the Geosciences

Moderator: Thorsten Becker

Guiding questions:

- What are the opportunities and challenges for ML and DL for the next 5-10 years in the solid Earth geosciences?
- ML and DL are often being used as a black box -- how do we move beyond the current situation into a deeper understanding of the techniques and into physical insight?
- What steps do we need to take as a community to move ML and DL forward?

I want to show some of my thoughts based on my experience and reading (may not be right), and hope to generate more discussions in this workshop

Panel 2: Next Practical Steps to Accelerate and Broaden Use of ML in the Geosciences

Moderator: Thorsten Becker

Guiding questions:

- What are the opportunities and challenges for ML and DL for the next 5-10 years in the solid Earth geosciences?
- ML and DL are often being used as a black box -- how do we move beyond the current situation into a deeper understanding of the techniques and into physical insight?
- What steps do we need to take as a community to move ML and DL forward?

My Talk Today ...

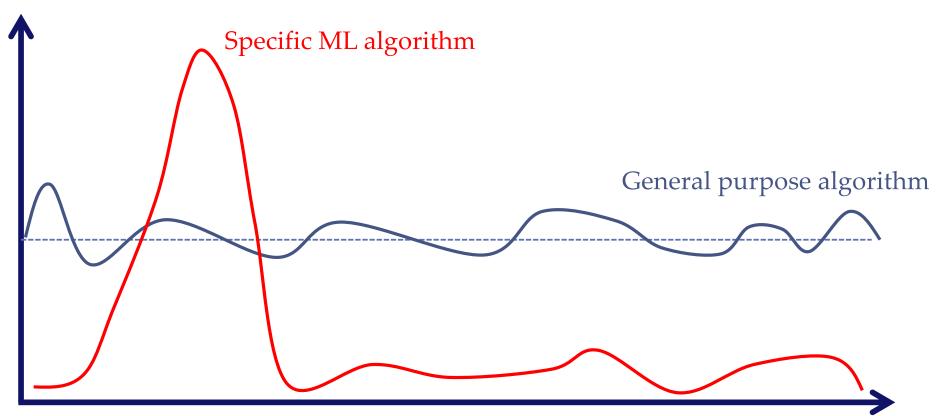
- Some limitations of current machine learning
- Some examples on combining ML with physics model
- Moving forward

Some limitations on current ML

Not magic

ML algorithms are narrow

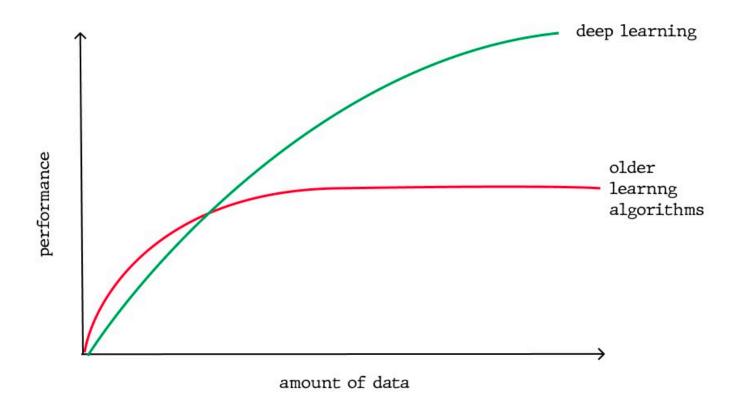
Performance

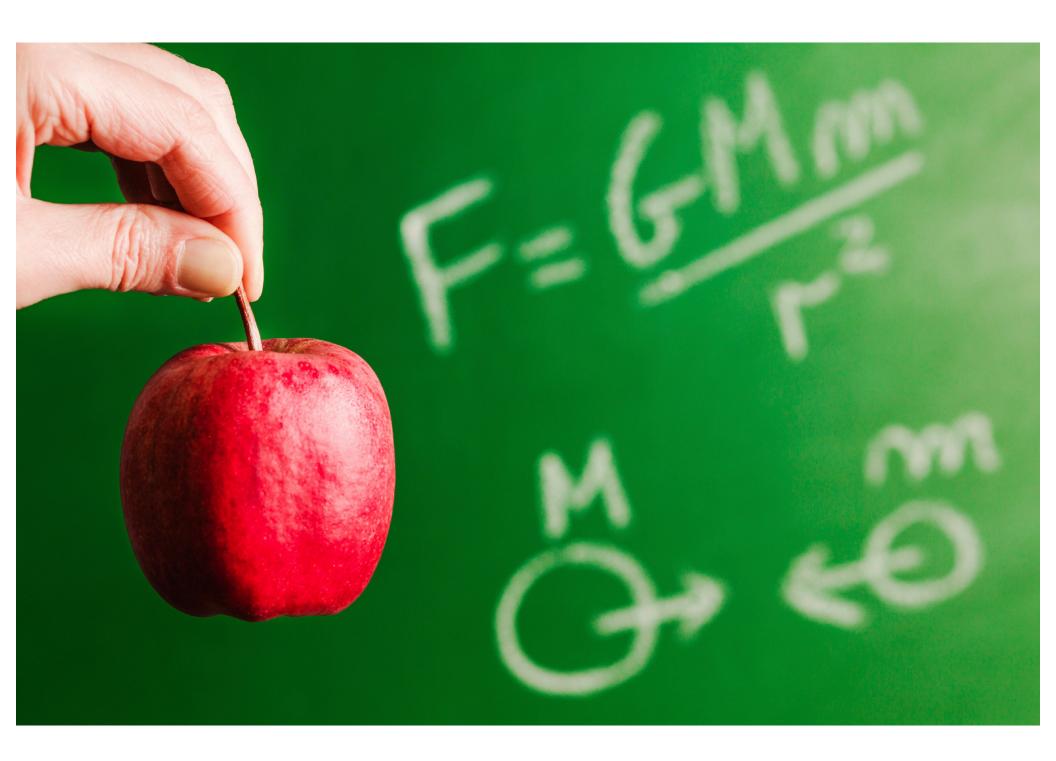


Types of problem

Need a lot of data

- > Lots of structured data, or lots of good data
- Labels (time tedious)
- > Some problems in our field are small data problems





As the old saying ...

Garbage in, Garbage out

still applies

Bias in the data

Bias in the data are difficult to identify

How AI systems amplify bias

Image recognition systems that use biased machine learning data sets will inadvertently magnify that bias. Researchers are examining ways to reduce the effects.

COOKING		
ROLE		VALUE
AGENT	•	WOMAN
FOOD	•	PASTA
HEAT	•	STOVE
TOOL	•	SPATULA
PLACE	>	KITCHEN

	VALUE
•	WOMAN
•	FRUIT
•	-
•	KNIFE
•	KITCHEN
	•

ROLE		VALUE
AGENT	>	WOMAN
FOOD	>	MEAT
HEAT	>	GRILL
TOOL	•	TONGS
PLACE	>	OUTSIDE

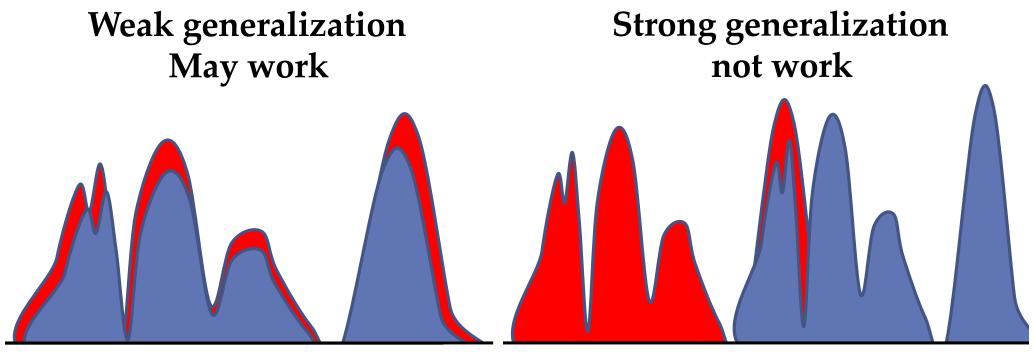
COOKING	
ROLE	VALUE
AGENT	► WOMAN
FOOD	► VEGETABLES
HEAT	▶ STOVE
TOOL	► TONGS
PLACE	► KITCHEN

COOKING		
ROLE		VALUE
AGENT	>	MAN
FOOD	>	-
HEAT	>	STOVE
TOOL	•	SPATULA
PLACE	•	KITCHEN

In this example of gender bias, adapted from a report published by researchers from the University of Virginia and the University of Washington, a visual semantic role labeling system has learned to identify a person cooking as female, even when the image is male.

Generalization ...

Generalization usually refers to a ML model's ability to perform well on new unseen data rather than just the training data.



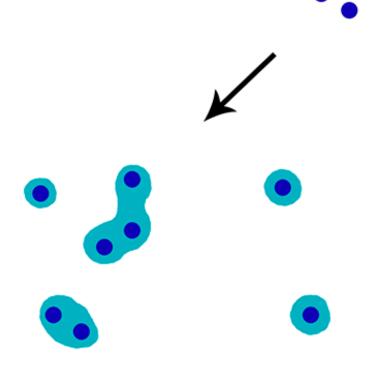
Training distribution

New distribution

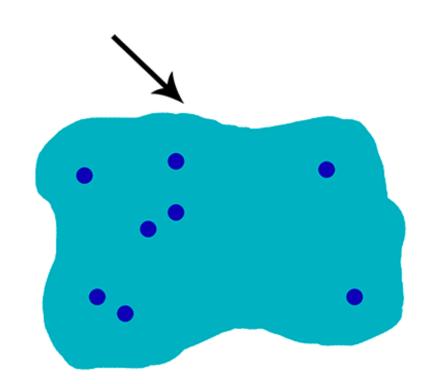
Training distribution

New distribution

A same set of data points or Experience



Local generalization:
Generalization power of
pattern recognition



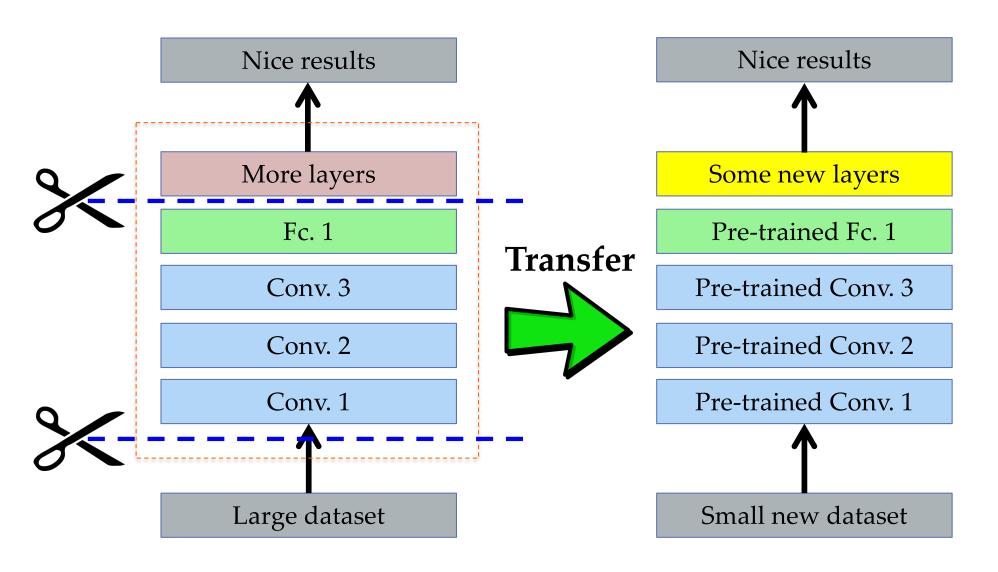
Extreme generalization:

Generalization power

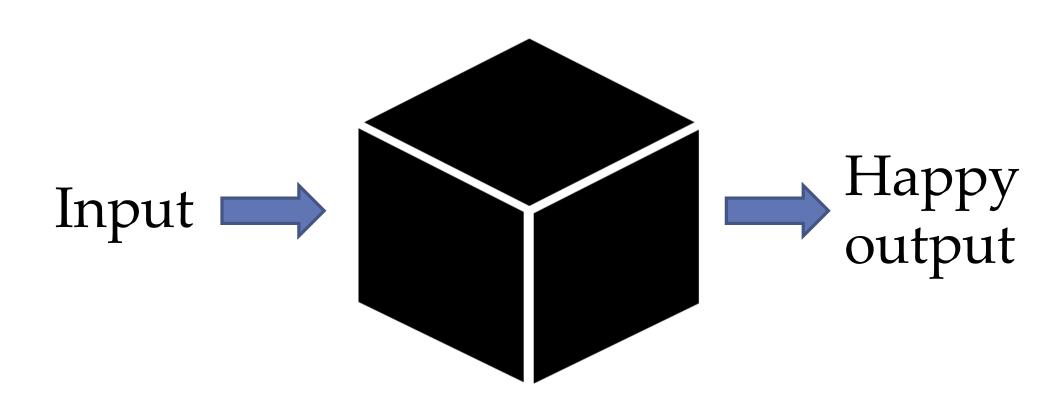
achieved via

abstraction and reasoning

Transfer learning



Missing physics ...



Missing physics ...

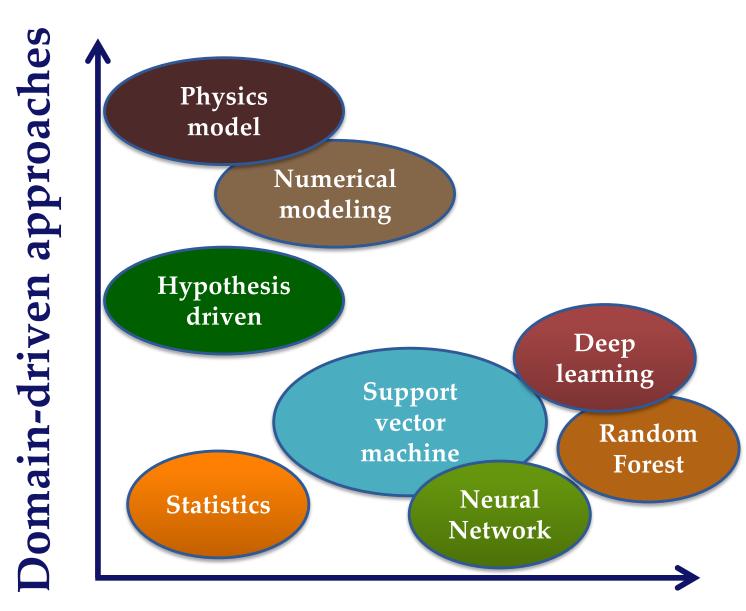
- Difficult to interpret how it works well
- May not bound by the existing laws

There are more limitations ...

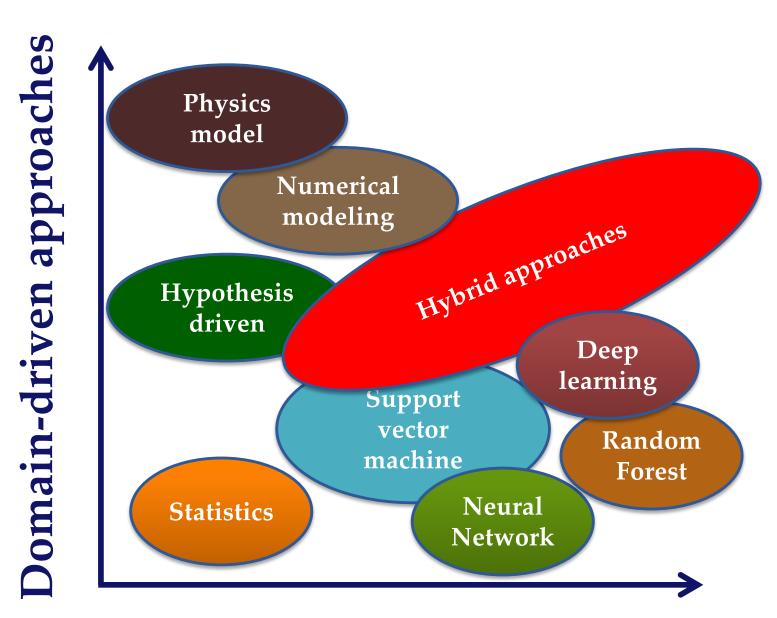
- One pixel attack for fooling deep neural networks
- Not easy to learn in real-time (even though we have online learning)
- Misapplication <u>AAAS: Machine learning 'causing science crisis'</u>
- **>** ...

Some examples on combining physics

Data-driven approaches



Data-driven approaches



Data-driven approaches

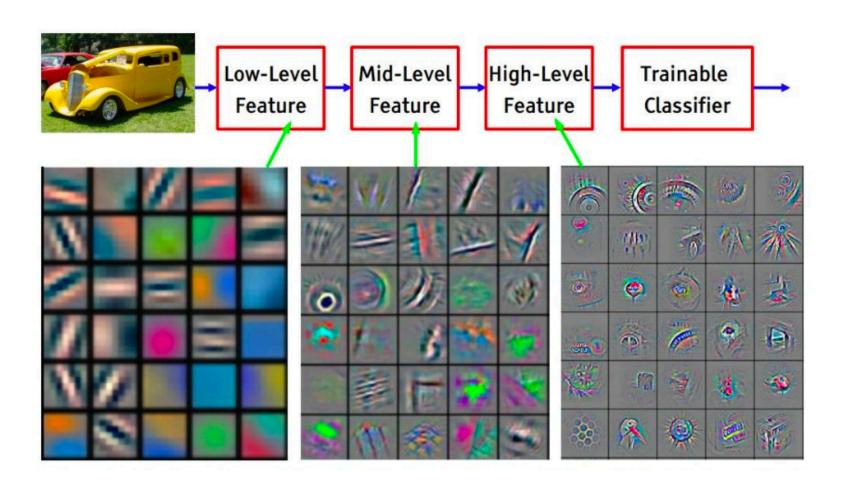
Luckily, more researchers are working on this

Let me get a start ...

- Better understanding what we learned
- Use physics generated data
- Encode the physics laws to a ML algorithm
- > Finding physics concepts
- **>** ...

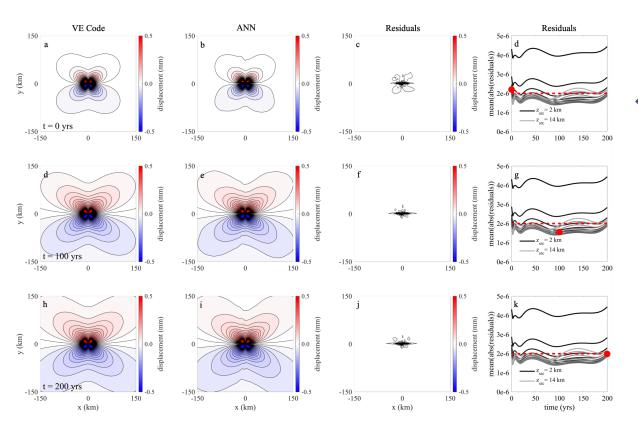
What we learned ...

We shouldn't stop when we just have a good model



Using synthetic data ...

- > Diego's presentation if there is not enough observation data
- Usually this can reduce the simulation computation cost



Enabling largescale viscoelastic calculations via neural network acceleration, DeVries et al. 2017

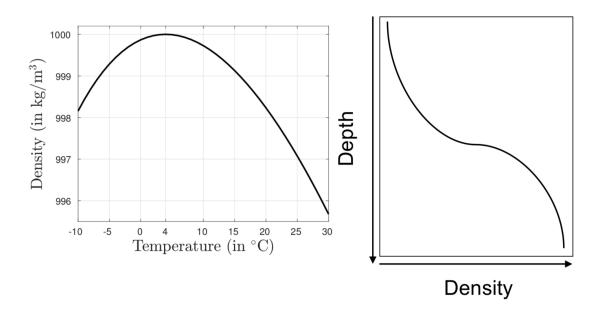
• Generating seismograms with deep neural networks, Krischer et al 2017

ML approach accelerates viscoelastic calculations by more than 50,000%

Add to cost function

$$\alpha Error_{ML-obs} + \lambda Error_{ML-phy}$$

	Input Drivers
1	Day of Year $(1-366)$
2	Depth (in m)
3	Short-wave Radiation (in W/m^2)
4	Long-wave Radiation (in W/m^2)
5	Air Temperature (in $^{\circ}C$)
6	Relative Humidity $(0-100 \%)$
7	Wind Speed (in m/s)
8	Rain (in cm)
9	Growing Degree Days [14]
10	Is Freezing (True or False)
11	Is Snowing (True or False)



Physics-guided Neural Networks (PGNN):

An Application in Lake Temperature Modeling Karpatne et al 2018

Add to cost function

$$\underset{f}{\operatorname{arg\,min}} \quad \underbrace{Loss(\hat{Y},Y) \, + \, \lambda \, R(f)}_{f} + \, \underbrace{\lambda_{PHY} \, Loss.PHY(\hat{Y})}_{\text{Physical Inconsistency}}$$

1.75 PHY

1.75

NN

NN

1.25

PGNN

0.75

0.05

PGNN

PGNN0

0.10

Physical Inconsistency

Physics-guided Neural
Networks (PGNN):
An Application in Lake
Temperature Modeling Karpatne et al 2018

Respecting law of physics by nonlinear PDE differentiate neural networks with respect to their input coordinates and model parameters to obtain physics informed neural networks

Burger's equation along with Dirichlet boundary conditions

$$u_t + uu_x - (0.01/\pi)u_{xx} = 0, \quad x \in [-1, 1], \quad t \in [0, 1],$$

$$u(0, x) = -\sin(\pi x),$$

$$u(t, -1) = u(t, 1) = 0.$$

$$f := u_t + uu_x - (0.01/\pi)u_{xx},$$

Physics Informed Deep Learning: Data-driven Solutions of Nonlinear Partial Differential Equations - Raissi et al 2017

Respecting law of physics by nonlinear PDE

differentiate neural networks with respect to their input coordinates and model parameters to obtain physics informed neural networks

Burger's equation along with Dirichlet boundary conditions

```
f := u_t + uu_x - (0.01/\pi)u_{xx},
\text{def u(t, x):}
u = \text{neural_net(tf.concat([t,x],1), weights, biases)}
\text{return u}
```

Correspondingly, the physics informed neural network f(t,x) takes the form

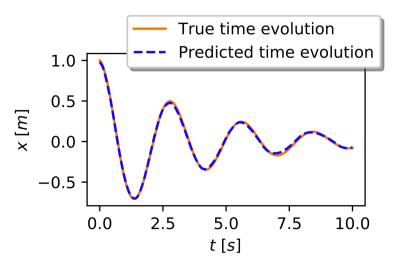
```
def f(t, x):
    u = u(t, x)
    u_t = tf.gradients(u, t)[0]
    u_x = tf.gradients(u, x)[0]
    u_xx = tf.gradients(u_x, x)[0]
    f = u_t + u*u_x - (0.01/tf.pi)*u_xx
    return f
```

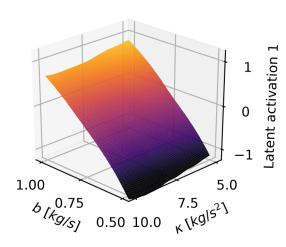
Physics Informed
Deep Learning:
Data-driven
Solutions of
Nonlinear Partial
Differential
Equations Raissi et al 2017

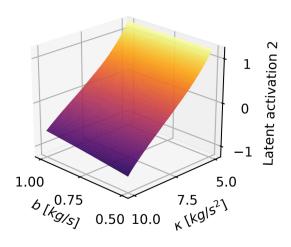
$$MSE = MSE_u + MSE_f,$$

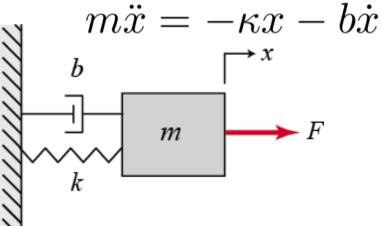
Finding physics concepts ...

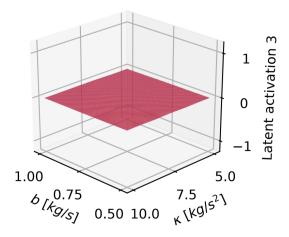
Learning from existing physics systems











Discovering physical concepts with neural networks

Iten et al 2018

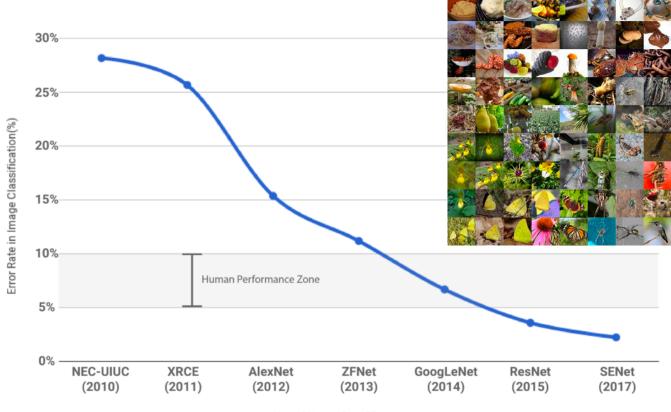
More to learn ...

- Bayesian approach
 - ➤ Bayesian inversion Minson et al 2013
 - Bayesian based detection Net-Visa, Sig-Visa Stuart Russell
 - Bayesian based early warning Tom Heaton's group
- Bayesian deep learning
- Physics in GAN model

Moving forward

- Benchmark datasets
- Open science
- New data sources
- > The new model, new architecture
- Geoscience curriculum

Benchmark datasets



New data sources - fusion

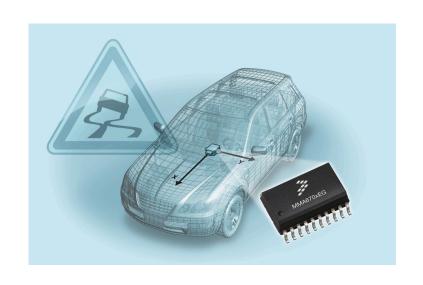
> Remote sensing, smartphones, social media, fiber optic, etc.

How to use different types of data

half million downloads last week

Future data source

Large-scale arrays



Thank you so much!

Qingkai Kong

http://seismo.berkeley.edu/qingkaikong/

