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Problem

Supervised
learning

Unsupervised
learning

Category _category or \_Quantity Group Group or Lower
quantity Lower Dim. Dimension
e . : Dimensionality
Classification| [Regression| |Clustering i i ot
Neural Network Support Vector Machine K-means
Logistic Regression Neural Network Gaussian Mixture PCA
Random Forest Ridge Regression DBSCAN LDA
Naive Bayes Random Forest  Spectral Clustering Isomap
Support Vector Machine Lasso Hierarchical Clustering Autoencoder



Earthquake detection Earthquake Early Warning
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Earthquake geodesy and other applications



Panel 2: Next Practical Steps to Accelerate and Broaden Use of ML in the Geosciences

Moderator: Thorsten Becker

Guiding questions:
e  What are the opportunities and challenges for ML and DL for the next 5-10 years in the solid Earth

geosciences?
e MLand DL are often being used as a black box -- how do we move beyond the current situation into a

deeper understanding of the techniques and into physical insight?
e What steps do we need to take as a community to move ML and DL forward?

I want to show some of my thoughts based on my
experience and reading (may not be right), and hope to
generate more discussions in this workshop



Panel 2: Next Practical Steps to Accelerate and Broaden Use of ML in the Geosciences

Moderator: Thorsten Becker

Guiding questions:
e  What are the opportunities and challenges for ML and DL for the next 5-10 years in the solid Earth

geosciences?
e MLand DL are often being used as a black box -- how do we move beyond the current situation into a

deeper understanding of the techniques and into physical insight?
e What steps do we need to take as a community to move ML and DL forward?

My Talk Today ...

» Some limitations of current machine learning
» Some examples on combining ML with physics model

» Moving forward



Some limitations on
current ML



Not magic




ML algorithms are narrow

Performance

Specific ML algorithm

General purpose algorithm

— "

Types of problem



performance

Need a lot of data

» Lots of structured data, or lots of good data
» Labels (time tedious)
» Some problems in our field are small data problems

deep learning

older

learnng
algorithms

amount of data






As the old saying ...

Garbage in,
Garbage out

still applies



Bias in the data

» Bias in the data are difficult to identify

How Al systems amplify bias

Image recognition systems that use biased machine learning data sets
will inadvertently magnify that bias. Researchers are
examining ways to reduce the effects.

pacy

COOKING COOKING COOKING COOKING COOKING

[ Rote  vaiue [ ROLE  VALUE N ROLE VAU [ ROLE  VALUE [N ROLE ____ VALUE |
AGENT  » WOMAN AGENT > WOMAN AGENT > WOMAN AGENT >  WOMAN AGENT »  MAN
FOOD »  PASTA FOOD »  FRUIT FOOD »  MEAT FOOD  » VEGETABLES FOOD  » =
HEAT  »  STOVE HEAT  » - HEAT  »  GRILL HEAT  »  STOVE HEAT  »  STOVE
TOOL > SPATULA TOOL >  KNIFE TOOL »  TONGS TOOL » TONGS TOOL  » SPATULA
PLACE > KITCHEN PLACE » KITCHEN PLACE » OUTSIDE PLACE  »  KITCHEN PLACE » KITCHEN

In this example of gender bias, adapted from a report published by researchers from the University
of Virginia and the University of Washington, a visual semantic role labeling system has learned
to identify a person cooking as female, even when the image is male.



Generalization ...

Generalization usually refers to a ML model's ability to perform well
on new unseen data rather than just the training data.

Weak generalization Strong generalization
May work not work

Training distribution Training distribution
New distribution New distribution



From Francois Chollet
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Local generalization: Extreme generalization:
Generalization power of Generalization power
pattern recognition achieved via

abstraction and reasoning



Transfer learning

Nice results

e

Q More layers
d<

Large dataset

Nice results

1

Some new layers

Pre-trained Fc. 1

Pre-trained Conv. 3

Pre-trained Conv. 2

Pre-trained Conv. 1

1

Small new dataset




Missing physics ...




Missing physics ...

» Difficult to interpret how it works well
» May not bound by the existing laws



There are more limitations ...

» One pixel attack for fooling deep neural networks

» Not easy to learn in real-time (even though we have online
learning)

» Misapplication - AAAS: Machine learning 'causing science
crisis’
> ...




Some examples on
combining physics



Domain-driven approaches

Numerical
modeling

Hypothesis
driven

Data-driven approaches



Domain-driven approaches
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Domain-driven approaches

Numerical
modeling

Hypothesis
driven

learning

vector

machine Forest

Neural
Network

Data-driven approaches



Luckily, more researchers
are working on this



Let me get a start ...

» Better understanding what we learned

» Use physics generated data

» Encode the physics laws to a ML algorithm
» Finding physics concepts

> ...



What we learned ...

Q Liner Regression
O Decision Trees

O K-Nearest Neighbors

Q Random Forests

Interpretability

Q Support Vector Machines

O Deep Neural Networks

Flexible



We shouldn’t stop when
we just have a good model

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Feature Classifier




Using synthetic data

» Diego’s presentation if there is not enough observation data
» Usually this can reduce the simulation computation cost

v aw o news e Enabling large-
E L ) ﬂ b () I c ) | * scale Vi§c0e1a§tic
X \@3 - R@@\J |- & 5 6@/\\\::_/ « calculations via
veom b L o neural network
. acceleration,
T | gi:f/\/_/ DeVries et al. 2017
e e Generating
O | i~ seismograms with
P e ] P deep neural
E R s
¥ L —nom networks, Krischer et

150 = 200y1s |

-150 0

05 2150 05 0e-6
150 -150 0 150 0 50 100 150 200 1 20 1 7
x (km) time (yrs) a

ML approach accelerates viscoelastic calculations by more than 50,000%



Encode physics laws into ML

» Add to cost function
aErroryy_ops + AETTOTN _phy

Input Drivers
Day of Year (1 — 366)
Depth (in m)
Short-wave Radiation (in W/m?)
Long-wave Radiation (in W/m?)
Air Temperature (in °C)
Relative Humidity (0 — 100 %)
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Rain (in cm)
Growing Degree Days [14] N D N N N
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Physics-guided Neural Networks (PGNN):
An Application in Lake Temperature Modeling Karpatne et al 2018




Encode physics laws into ML

» Add to cost function
arg min Loss(f/,Y) + AN R(f) + Apay Loss.PHY(}A/)

f ~ ~ .
Typical loss function Physical Inconsistency
2 | I I |
O 15| .
125 | NN |
2 .-
o 1F |
= - I = R
Physics-guided Neural 0.75 PGNN PGNNO
Networks (PGNN): 0.5 | | | | 1
An Application in Lake 0 0.2 0.4 0.6 0.8 1

Temperature Modeling -
Karpatne et al 2018

Physical Inconsistency



Encode physics laws into ML

» Respecting law of physics by nonlinear PDE

differentiate neural networks with respect to their input coordinates and model
parameters to obtain physics informed neural networks

Burger’s equation along with Dirichlet boundary conditions
u; + uuy — (0.01/m)u,, =0, x€[—1,1], te€]0,1],
u(0,z) = — sin(7x),
u(t, —1) = u(t, 1) = 0.

f = +uu, — (0.01/7)uy,,
Physics Informed Deep Learning: Data-driven

Solutions of Nonlinear Partial Differential
Equations - Raissi et al 2017



Encode physics laws into ML

» Respecting law of physics by nonlinear PDE

differentiate neural networks with respect to their input coordinates and model
parameters to obtain physics informed neural networks

Burger’s equation along with Dirichlet boundary conditions Physics Informed

f = u; +uu, — (0.01/7)uy,, Deep Learning:
Data-driven

def u(t, x): .
u = neural_net(tf.concat([t,x],1), weights, biases) Solutions of
return u Nonlinear Partial
Differential
Correspondingly, the physics informed neural network f(t,z) takes the form Equations -
def f(t, x): Raissi et al 2017

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0] /\ j? — /\ 1 /\ 1

u_xx = tf.gradients(u_x, x)[0] SE SE’U, + SEf,
f =u_t + wku_x - (0.01/tf.pi)*u_xx

return f




Finding physics concepts ...

» Learning from existing physics systems

- True time evolution
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Discovering physical
concepts with neural

networks
[ten et al 2018



More to learn ...

» Bayesian approach

» Bayesian inversion — Minson et al 2013
> Bayesian based detection — Net-Visa, Sig-Visa - Stuart Russell
» Bayesian based early warning — Tom Heaton’s group

» Bayesian deep learning
» Physics in GAN model



Moving forward

» Benchmark datasets

» Open science

» New data sources

» The new model, new architecture
» (Geoscience curriculum

Machine learning for data-driven discovery in
solid Earth geoscience — Bergen et al 2019



Benchmark
datasets
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New data sources - fusion

» Remote sensing, smartphones, social media, fiber optic, etc.

How to use
different
types of

data

half million
downloads
last week




Future data source

Large-scale arra ke i §




Thank you so much!

Qingkai Kong w\/ Berkeley
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