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Remote sensing: perfect storm for ML

• Huge data volumes
• 11 TB/day from Planet Labs alone

San Francisco, February 11, 2017. Planet, Inc.
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• Huge data volumes
• 11 TB/day from Planet Labs alone

• High-dimensional data
• Multispectral, hyperspectral

Credit: Christophe et al., 2008 3



Remote sensing: perfect storm for ML

• Huge data volumes
• 11 TB/day from Planet Labs alone

• High-dimensional data
• Multispectral, hyperspectral
• Frequent revisit times

• Landsat: 16 days
• Sentinel-2: 5 days
• Planet Labs: daily or sub-daily

Viedma Glacier, Southern Patagonia, South America. Credit: Planet, Inc.4



Remote sensing: perfect storm for ML

• Huge data volumes
• 11 TB/day from Planet Labs alone

• High-dimensional data
• Multispectral, hyperspectral
• Frequent revisit times

• Landsat: 16 days
• Sentinel-2: 5 days
• Planet Labs: daily or sub-daily

• Complex relationships within and 
between spatial, spectral, temporal 
dimensions Credit: UA/LPL/NASA/Brian Bue
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Challenges for ML in remote sensing

Zhong et al., 2019

• Datasets not independently and identically 
distributed (i.i.d.)

• Class imbalances
• Difficult to assess generalization since objects represented 

by multiple pixels
• Tiles much larger than typical ML image sizes
• Non-trivial pre-processing/cleaning

• Cloud removal
• Orbital track
• Interpolation/smoothing 
• Co-registration

• Labeling often requires domain expertise
• Input sources have different physical units
• Non-Lambertian surfaces (illumination differences)
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Challenges for ML in remote sensing

CIFAR10 images: 32×32×3 px

Landsat-8 image: 3660×3660×11 px

(Harmonized Landsat and Sentinel-2 image 
over N Illinois. Credit: USGS/NASA

• Datasets not independently and identically 
distributed (i.i.d.)

• Class imbalances
• Difficult to assess generalization since objects represented 

by multiple pixels
• Tiles much larger than typical ML image sizes
• Non-trivial pre-processing/cleaning

• Cloud removal
• Orbital track
• Interpolation/smoothing 
• Co-registration

• Labeling often requires domain expertise
• Input sources have different physical units
• Non-Lambertian surfaces (illumination differences)
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Challenges for ML in remote sensing

• Datasets not independently and identically 
distributed (i.i.d.)

• Class imbalances
• Difficult to assess generalization since objects represented 

by multiple pixels
• Tiles much larger than typical ML image sizes
• Non-trivial pre-processing/cleaning

• Cloud removal
• Orbital track
• Interpolation/smoothing 
• Co-registration

• Labeling often requires domain expertise
• Input sources have different physical units
• Non-Lambertian surfaces (illumination differences)

Sentinel-2 Time Lapse (Cropped)
Harmonized Landsat and Sentinel-2 (HLS) 

Credit: USGS/NASA
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Challenges for ML in remote sensing

• Datasets not independently and identically 
distributed (i.i.d.)

• Class imbalances
• Difficult to assess generalization since objects represented 

by multiple pixels
• Tiles much larger than typical ML image sizes
• Non-trivial pre-processing/cleaning

• Cloud removal
• Orbital track
• Interpolation/smoothing 
• Co-registration

• Labeling often requires domain expertise
• Input sources have different physical units
• Differences in illumination

Meteor (Impact) Crater, AZ. 
(Landsat, USGS/NASA)

Iturralde (Suspected) Crater, Bolivia.
(Landsat, USGS/NASA)

Veins or bright-toned material?
Mars Science Laboratory, NASA/JPL
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Challenges for ML in remote sensing

• Datasets not independently and identically 
distributed (i.i.d.)

• Class imbalances
• Difficult to assess generalization since objects represented 

by multiple pixels
• Tiles much larger than typical ML image sizes
• Non-trivial pre-processing/cleaning

• Cloud removal
• Orbital track
• Interpolation/smoothing 
• Co-registration

• Labeling often requires domain expertise
• Input sources have different physical units
• Differences in illumination

Sentinel-1 (radar) and Sentinel-2 (multispectral) images of 
Glacier Bay landslide 

Credit: ESA/Simon Gascoin
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Challenges for ML in remote sensing

• Datasets not independently and identically 
distributed (i.i.d.)

• Class imbalances
• Difficult to assess generalization since objects represented 

by multiple pixels
• Tiles much larger than typical ML image sizes
• Non-trivial pre-processing/cleaning

• Cloud removal
• Orbital track
• Interpolation/smoothing 
• Co-registration

• Labeling often requires domain expertise
• Input sources have different physical units
• Differences in illumination conditions

LROC images of Apollo 11 landing site from 
lunar dusk to dawn

Credit: NASA/ASU/Rob Pettengill
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Common applications 
• Land use/cover classification
• Scene classification
• Change detection/monitoring
• Anomaly/novelty detection
• Estimation of physical 

quantities

Remote sensing applications of ML
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Land use and land cover classification

• Multi-class classification at pixel level
• Inputs typically vector or patch
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Land use and land cover classification

• Multi-class classification at pixel level
• Inputs typically vector or patch
• Labels from national databases (e.g., 

NLCD, CDL) or field campaigns
• Decision trees and random forests most 

common (supervised)
• Deep learning gaining popularity

• Convolutional neural networks (1D/2D)
• Recurrent neural networks/LSTMs

Target: reference data 
(ground-truth)

USDA/NASS Cropland 
Data Layer (N Illinois, 

2017) 14



Land use and land cover classification

• Multi-class classification at pixel level
• Inputs typically vector or patch
• Labels from national databases (e.g., 

NLCD, CDL) or field campaigns
• Decision trees and random forests most 

common (supervised)
• Deep learning gaining popularity

• Convolutional neural networks (1D/2D)
• Recurrent neural networks/LSTMs crop type 

classification

Zhong et al., 2018
Methods: compared 1D 
CNN and LSTM

Asner et al., 2017
Method: K-means 
clustering 
(unsupervised) 
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Change detection and monitoring

• Pixel or image level
• Difference-based methods and 

post-classification comparison 
most common for pixel-level

− =

Before After Difference

Kerner et al., 2019

Gray et al., 2018

Difference-based:

Post-classification comparison:
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Change detection and monitoring

• Pixel or image level
• Difference-based methods and 

post-classification comparison 
most common for pixel-level

• Object-based and deep learning 
approaches for image-level

• Multi-temporal images compared at 
feature level

Kerner et al., 2019

Autoencoder Neural Network

Latent Representation Difference

Before After
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Scene (image) classification

• Becoming more common with increasing 
spatial resolution 

• Primarily enabled by deep learning, esp. 
convolutional neural networks

• Less labeled training data available
• Some work on transfer learning using 

models pre-trained on ImageNet (14M) 
• e.g., Marmanis et al., 2015; Penatti et al., 2015; 

Castelluccio et al., 2015; Hu et al., 2015

Parking lotResidentialForestRiver/lakeIndustrial

Zou et al., 2015
Dark duneBright duneCrater

EdgeOtherDark slope streak

Wagstaff et al., 2018

Benchmark dataset collected from Google Earth:

Scene classification 
used for Planetary 
Data System search
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Novelty/anomaly detection

• Detecting rare or unseen patterns (could 
be spatial, spectral, temporal)

• Typically unsupervised or one-class 
supervision (only “normal” known)

• Majority of remote sensing applications 
use Reed Xiaoli (RX) detector for pixel-wise 
anomaly scores

Mahalanobis distance 
between pixel and 
background distribution
(Reed & Yu, 1990)

Credit: Harris Geospatial
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Novelty/anomaly detection

• Detecting rare or unseen patterns (could 
be spatial, spectral, temporal)

• Typically unsupervised or one-class 
supervision (only “normal” known)

• Majority of remote sensing applications 
use Reed Xiaoli (RX) detector for pixel-wise 
anomaly scores

• Reconstruction-based methods common 
in ML literature

Encoder
Input Image

Decoder
Reconstructed

Image

Error Map
Kerner et al., 2019
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Estimation of physical quantities

• Regression of physical/biophysical values 
directly from Earth observation data 

• Often combines multiple data sources
• Common: random forests/regression trees, 

feed-forward neural networks, process 
models

• Emerging: convolutional neural networks, 
recurrent neural networks (LSTMs)

Maize yield estimates in US Corn Belt (Jin et al., 2017)

Aboveground carbon density in Borneo (Asner et al., 2018)21



Emerging applications
• Object detection/mapping
• (Semantic) segmentation
• Pansharpening/super-resolution
• Registration

Remote sensing applications of ML
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Object detection/mapping

• Bounding box predicted around feature or 
object of interest

• Common deep learning architectures (Zhao 
et al., 2019):

• YOLO (v3) 
• R-CNN/Fast R-CNN/Faster R-CNN
• Regional Fully Connected Networks (R-FCN)

• Challenge: redundancy

Wronkiewicz, Kerner, & 
Harrison 2018 

Zhang et al., 2019 v

CosmiQ

Zhang et al., 2019
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Semantic segmentation

• Linking each pixel in an image to a class label
• Supervised: class labels are known
• Unsupervised: class labels are unknown (result is 

similar to clustering)

• Often involves object detection step
• Commonly deep learning architectures:

• Fully convolutional networks (Long et al., 2015)
• U-Net (Ronneberger et al., 2015)
• Mask R-CNN (He et al., 2017)

Gray et al., 2019

Marmanis et al., 2016
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Pansharpening/super-resolution

• Image fusion or direct prediction of higher-
resolution image from lower-resolution image

• Deep learning approaches:
• Convolutional neural networks
• Autoencoder neural networks
• Generative adversarial networks (GANs)

• May be useful for object detection or combining 
data sources, but concern about physical 
interpretation of predicted data

• “Deep fakes”: https://thispersondoesnotexist.com/

Tao et al., 2019
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Image Registration

• Aligning two or more images captured at 
different times/viewpoints/sensors

• Goal to find affine transformation between 
pair of images

• Pre-processing step for many 
approaches, e.g., change detection

• Many approaches based on Siamese 
networks 

• Others estimate image-to-image 
mapping function using regression 
methods including random forest or 
standard neural networks

Mis-registered LROC images
Kerner et al., 2019
Credit: LROC/ASU
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Image Registration

• Aligning two or more images captured at 
different times/viewpoints/sensors

• Goal to find affine transformation between 
pair of images

• Pre-processing step for many 
approaches, e.g., change detection

• Many approaches based on Siamese 
networks 

• Others estimate image-to-image 
mapping function using regression 
methods including random forest or 
standard neural networks

Zoomed-in “chessboard” of Landsat-8 and Sentinel-2A 
images before and after co-registration using Random 

Forest regression mapping.
(Skakun et al., 2017) 
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Limitations/Directions for Future Work

• Land cover classification most common, but little 
discussion of generalization

• Most studies focused on producing one map for one 
year in one area 

• Global inference/operational analysis is still a  
major challenge

• Limited ground data, especially for developing 
countries without national programs

• Interpretability/explainability and reproducibility
• Uncommon for studies to go “extra step” to understand 

results and learned representations or provide 
executable code

Visualization of feature map activations for 
different EVI time series input examples.

(Zhong et al., 2019)

Local peaks Decreasing slope
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Questions?

Hannah Kerner
Assistant Research Professor
University of Maryland, College Park
hkerner@umd.edu
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