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Remote sensing: perfect storm for ML

* Huge data volumes
« 11 TB/day from Planet Labs alone

J -4

San Francisco, February 11, 2017. Planet, Inc.



Remote sensing: perfect storm for ML

* Huge data volumes
* 11 TB/day from Planet Labs alone

* High-dimensional data
* Multispectral, hyperspectral

Wavelength




Remote sensing: perfect storm for ML

* Huge data volumes N s |3

* 11 TB/day from Planet Labs alone

* High-dimensional data

* Multispectral, hyperspectral

* Frequent revisit times
* Landsat: 16 days
* Sentinel-2: 5 days
* Planet Labs: daily or sub-daily o

.
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Viedma Glacier, Southern Patagonia, South America. Credit: Planet, Iac.



Remote sensing: perfect storm for ML

* Huge data volumes ESP_027802_168

AR

« 11 TB/day from Planet Labs alone

* High-dimensional data
* Multispectral, hyperspectral

* Frequent revisit times
* Landsat: 16 days
* Sentinel-2: 5 days
* Planet Labs: daily or sub-daily

* Complex relationships within and
between spatial, spectral, temporal
dimensions

L

Credit: UA/LPL/NASA/Brian Bue



Challenges for ML in remote sensing

 Datasets not independently and identically Yolo County N
distributed (i.i.d.) TP }\
« Class imbalances s

» Difficult to assess generalization since objects represented \ 7
by multiple pixels -

California

I: Training ]
|| validation
|:] Test [ R B B B

0 5 10 20 Kilometers

Zhong et al., 2019



Challenges for ML in remote sensing

» Datasets not independently and identically - .
distributed (Ild) CIFAR10 images: 32X32X3 px

* Difficult to assess generalization since objects represented
* Tiles much larger than typical ML image sizes Landsat-8 image: 3660x3660X 11 px

by multiple pixels

(Harmonized Landsat and Sentinel-2 image
over N Illinois. Credit: USGS/NASA

~



Challenges for ML in remote sensing

* Datasets not independently and identically
distributed (i.i.d.)
* Class imbalances
* Difficult to assess generalization since objects represented
by multiple pixels
* Tiles much larger than typical ML image sizes

* Non-trivial pre-processing/cleaning
* Cloud removal
* Orbital track
* Interpolation/smoothing
* Co-registration
Sentinel-2 Time Lapse (Cropped)

Harmonized Landsat and Sentinel-2 (HLS)
Credit: USGS/NASA



Challenges for ML in remote sensing

» Datasets not independently and identically
distributed (i.i.d.)

e Classimbalances

» Difficult to assess generalization since objects representej s
by multiple pixels :

* Tiles much larger than typical ML image sizes L e
Meteor (Impact) Crater, AZ. lturralde (Suspected) Crater, Bolivia.

* Non-trivial pre-processing/cleaning (Landsat, USGS/NASA (Landsat, USGS/NASA)
* Cloud removal
 Orbital track
* Interpolation/smoothing
* Co-registration

* Labeling often requires domain expertise

Veins or bright-toned material?
Mars Science Laboratory, NASA/JPL



Challenges for ML in remote sensing

» Datasets not independently and identically
distributed (i.i.d.)

e Classimbalances

* Difficult to assess generalization since objects represen
by multiple pixels "

Tiles much larger than typical ML image sizes
Non-trivial pre-processing/cleaning
* Cloud removal

* Orbital tra.Ck . Sentinel-1 (radar) and Sentinel-2 (multispectral) images of
* Interpolation/smoothing Glacier Bay landslide
° Co—registration Credit: ESA/Simon Gascoin

Labeling often requires domain expertise
* Input sources have different physical units

10



Challenges for ML in remote sensing

* Datasets not independently and identically
distributed (i.i.d.)

* Class imbalances k&
» Difficult to assess generalization since objects representedies
by multiple pixels
* Tiles much larger than typical ML image sizes

* Non-trivial pre-processing/cleaning
* Cloud removal
 Orbital track
* Interpolation/smoothing
* Co-registration

. . . . LROC images of Apollo 11 landing site from
* Labeling often requires domain expertise lunar dusk to dawn

. . . Credit: NASA/ASU/Rob Pettengill
* Input sources have different physical units

e Differences in illumination conditions

11



Remote sensing applications of ML

Common applications
e Land use/cover classification

* Scene classification
* Change detection/monitoring
* Anomaly/novelty detection

* Estimation of physical
guantities



Mormalized Reflectance

Land use and land cover classification

» Multi-class classification at pixel level
* Inputs typically vector or patch

Landsat 8 Reflectance Spectra NDVI Time Series
0.5 —— Soybeans —— Soybeans
Corn Corn
—— Deciduous forest 0.8 1 —— Deciduous forest
0.4 W
=
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0.3 =
i
B
T 04
02 1 o
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E
=]
0.1 = 021
0.0 1 0.0 -
050 075 100 125 150 175 200 2325 0 s 100 150 200 350 300 350

Wawvelength (um) Day of Year
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Land use and land cover classification

» Multi-class classification at pixel level

* Inputs typically vector or patch

* Labels from national databases (e.g.,
NLCD, CDL) or field campaigns

* Decision trees and random forests most
common (supervised)

* Deep learning gaining popularity
* Convolutional neural networks (1D/2D)
* Recurrent neural networks/LSTMs

Target: reference data § ™ g™ "
(ground-truth) %a-, alll \
USDA/NASS Cropland | X %24 E
Data Layer (N Illinois, | # £
2017) A"




Land use and land cover classification

» Multi-class classification at pixel level
* Inputs typically vector or patch =

B Arfaifa
[] Almonds Pistachios

* Labels from national databases (e.g., — e

Zhongetal., 2018 I Cucurbits

NLCD, CDL) or field campaigns Methods: compared 1D[ 22"

CNN and LSTM ] Truck
* Decision trees and random forests most e
common (supervised)
* Deep learning gaining popularity
* Convolutional neural networks (1D/2D)
e Recurrent neural networks/LSTMs

Asner et al., 2017
Method: K-means
clustering
(unsupervised)

B DecpReef [ |sand || Sh.Reef1 I sh. Reef 3

- Coral Rubble . Sea Grass & |:| Sh. Reef 2 . Sh. Reef 4
Reef



Change detection and monitoring

Post-classification comparison:

* Pixel or image level

. B Emergent Wetland
* Difference-based methods and s
nost-classification comparison
most common for pixel-level

Scrub-Shrub Wetland
Supratidal Sand

Il Forested Upland
Herbaceous Upland
Scrub-Shrub Upland

Difference-based:

e B e
i : Bt -
%%
Before After Difference 2017 Habitat Classification

0 038075  1.5Kilometers )
Kerner et al., 2019 : A

Gray et al., 2018



Change detection and monitoring

* Pixel or image level

* Difference-based methods and
nost-classification comparison
most common for pixel-level

* Object-based and deep learning
approaches for image-level

* Multi-temporal images compared at
feature level

Before After

Autoencoder Neural Network

'/f*ff+t +\+\»\\\

Latent Representation Difference

Kerner et al., 2019



Scene (image) classification

Benchmark dataset collected from Google Earth:

i BeCOmlng more common W|th increaSing Industrial River/lake  Forest .l‘l??esidential Parking lot
spatial resolution 3 _

* Primarily enabled by deep learning, esp.
convolutional neural networks

* Less labeled training data available

* Some work on transfer learning using » k Zouetal, 2015
models pre-trained on ImageNet (14M) Brightdune Darkdune

* e.g.,Marmanis et al., 2015; Penatti et al., 2015;
Castelluccio et al., 2015; Hu et al., 2015

Scene classification
used for Planetary
Data System search

Edge

Wagstaff et al., 201188



Novelty/anomaly detection

* Detecting rare or unseen patterns (could C T T 1
be spatial, spectral, temporal) [ o

— Mahalanobis distance

 Typically unsupervised or one-class 1

L1 between and

supervision (only “normal” known) |- background distribution
Hs (Reed & Yu, 1990)

arx(x;) = (@i — pe)" X, (@i — pe)

* Majority of remote sensing applications -
use Reed Xiaoli (RX) detector for pixel-wise
anomaly scores

Credit: Harris Geospatial



Novelty/anomaly detection

* Detecting rare or unseen patterns (could Encoder Decoder

Reconstructed

i

be spatial, spectral, temporal) restimage image

* Typically unsupervised or one-class N 4
supervision (only “normal” known) s,

* Majority of remote sensing applications | L /
use Reed Xiaoli (RX) detector for pixel—Wise Error Map | -
anomaly scores

Kerner et al., 2019

 Reconstruction-based methods common
in ML literature



Estimation of physical quantities

* Regression of physical/biophysical values
directly from Earth observation data .

» Often combines multiple data sources

 Common: random forests/regression trees, iy
feed-fo F'wa rd neu I’al netWO rkS, p Focess Maizeield estimates in US Co Belt (Jin et al.217)

CAO ACD

mOdelS f", (Mg Cha ']

* Emerging: convolutional neural networks,
recurrent neural networks (LSTMs)

Aboveground carbon density in Borneo (Asner et al., 2018)



Remote sensing applications of ML

Emerging applications

* Object detection/mapping

* (Semantic) segmentation

* Pansharpening/super-resolution
* Registration



Object detection/mapping

* Bounding box predicted around feature or
object of interest

« Common deep learning architectures (Zhao
et al., 2019):
* YOLO (v3)
 R-CNN/Fast R-CNN/Faster R-CNN
* Regional Fully Connected Networks (R-FCN)

* Challenge: redundancy

Zhangetal., 2019

Wronkiewicz, Kerner, &
Harrison 2018




Semantic segmentation

* Linking each pixel in an image to a class label
» Supervised: class labels are known
* Unsupervised: class labels are unknown (result is
similar to clustering)
 Often involves object detection step

* Commonly deep learning architectures:
* Fully convolutional networks (Long et al., 2015)
* U-Net (Ronneberger et al., 2015)
 Mask R-CNN (He et al., 2017)

,,,,,,
.....
lllll

Grayetal., 2019



Pansharpening/super-resolution

* Image fusion or direct prediction of higher-
resolution image from lower-resolution image

* Deep learning approaches:
* Convolutional neural networks
» Autoencoder neural networks
* Generative adversarial networks (GANS)

* May be useful for object detection or combining
data sources, but concern about physical
interpretation of predicted data

* “Deep fakes”: https://thispersondoesnotexist.com/

275m MISR red bicubic

MAGiGAN SRR

il €
ey iy V.
A
» s A By
-

30m Landsat red


https://thispersondoesnotexist.com/

Image Registration

* Aligning two or more images captured at
different times/viewpoints/sensors
* Goal to find affine transformation between
pair of images

* Pre-processing step for many
approaches, e.g., change detection

Mis-registered LROC images
Kerner et al., 2019
Credit: LROC/ASU

26



Image Registration

* Aligning two or more images captured at
different times/viewpoints/sensors

e Goal to find affine transformation between
pair of images
* Pre-processing step for many
approaches, e.g., change detection

* Many approaches based on Siamese
networks

* Others estimate |mage -to- |mage
mapping function using regression
methods including random forest or
standard neural networks

Zoomed-in “chessboard” of Landsat-8 and Sentinel-2A
images before and after co-registration using Random
Forest regression mapping.

(Skakun et al., 2017)

27



Limitations/Directions for Future Work

* Land cover classification most common, but little
discussion of generalization
* Most studies focused on producing one map for one
year in one area

* Global inference/operational analysis is still a
major challenge

* Limited ground data, especially for developing
countries without national programs

* Interpretability/explainability and reproducibility

* Uncommon for studies to go “extra step” to understand
results and learned representations or provide
executable code

ecte FuIIy connected Iave with softmax actlvatlon

Visualization of feature map activations for
different EVI time series input examples.
(Zhong et al., 2019)

Local peaks Decreasing slope



Questions?

Hannah Kerner

/ HARVEST Assistant Research Professor

University of Maryland, College Park
hkerner@umd.edu
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