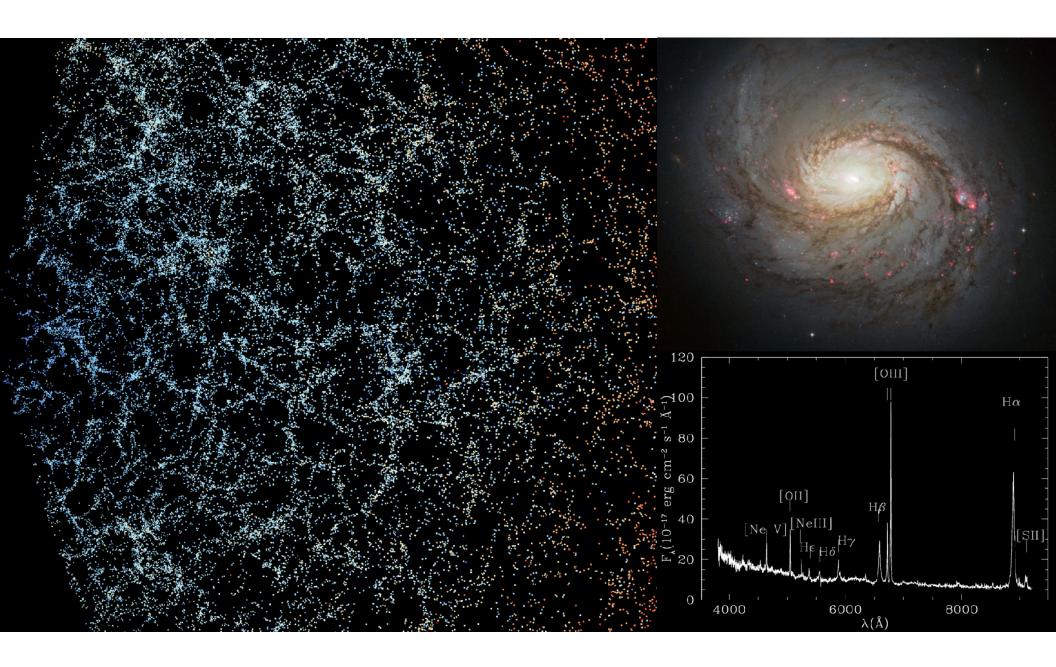
Statistics, machine learning, and astrophysics

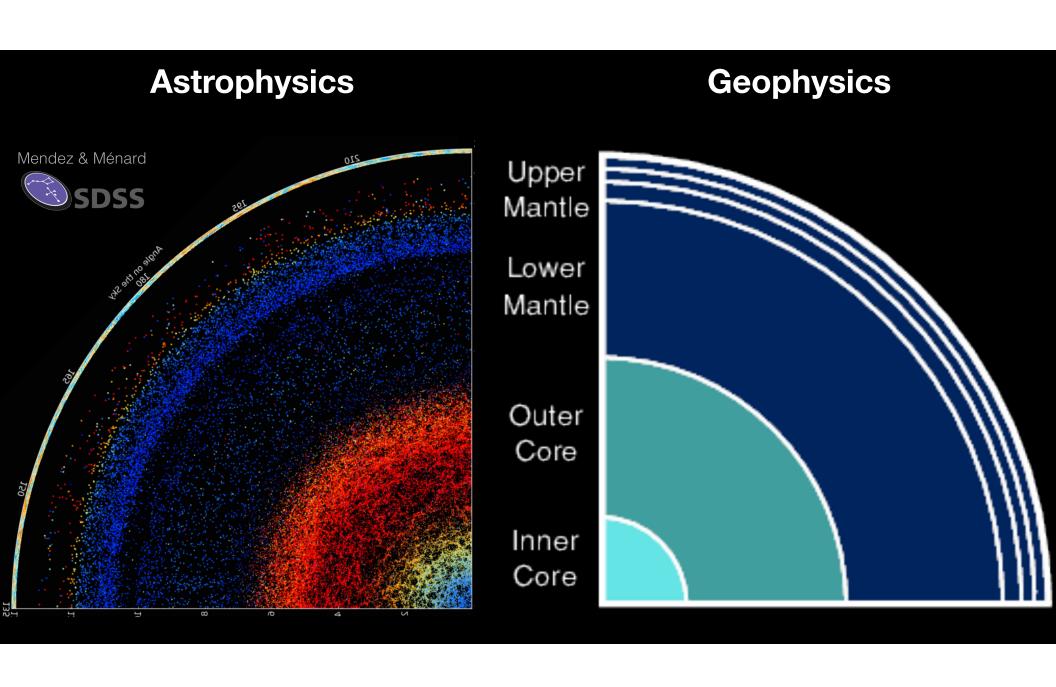
Brice Ménard

Johns Hopkins University

October 28 2019

NAS



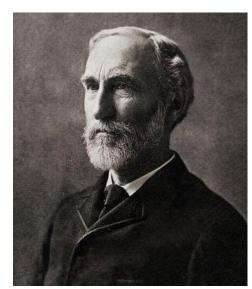


How do we do science?

"One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity."

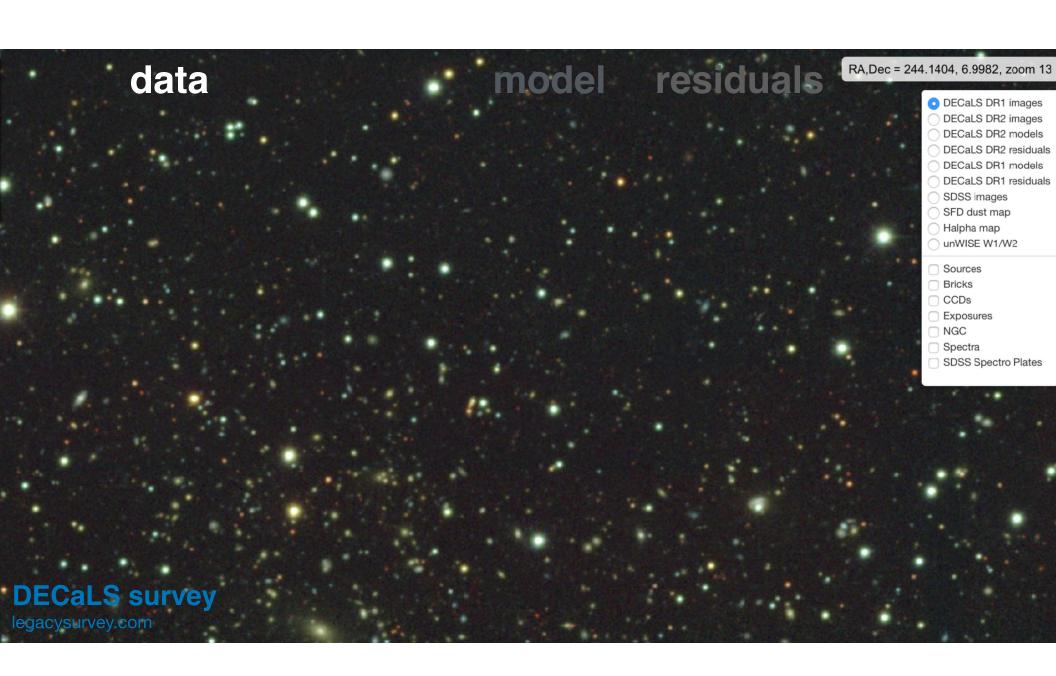
(Gibbs, 1881)

Complex world Simplicity

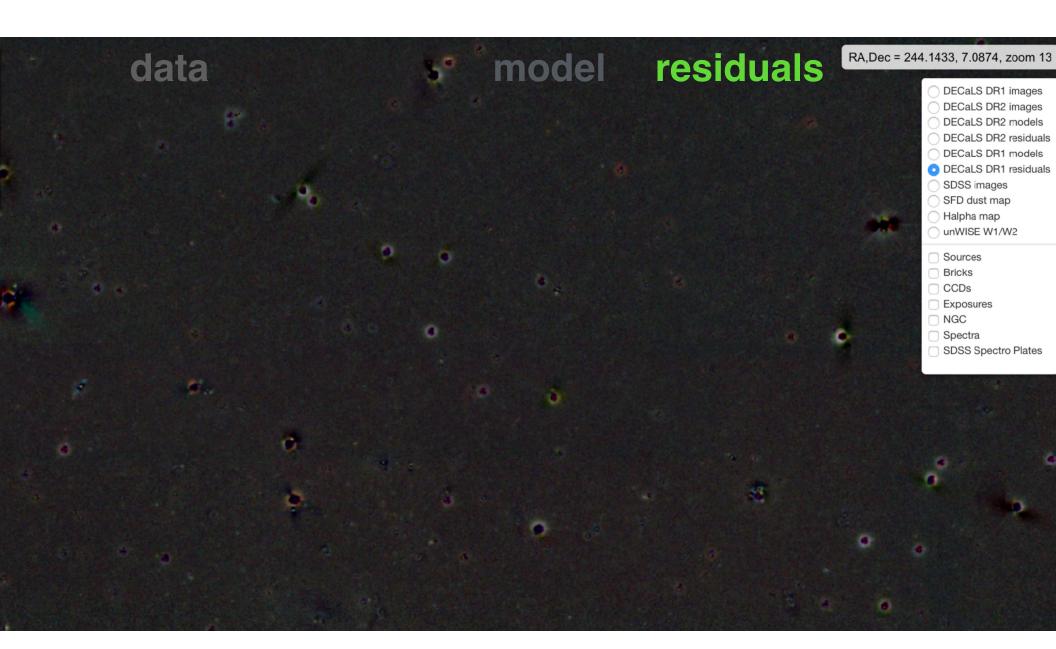


Josiah Willard Gibbs (1839 – 1903)

- Visual insight has been an important guide in science for centuries.
 - → visual insight is receding
- We attempt to describe what we see using the language of physics & statistics.
 - → complexity can be a limitation







data

pixel based

model

object based
reduced dimensionality

measured parameters

 brightness
 27.91 27.67 27.49 27.35

 15.21 14.98 14.80 14.66

 position
 10.67 10.46 10.29 10.16

 8.466 8.260 8.102 7.976

 7.191 6.993 6.840 6.719

 ellipticity
 6.371 6.178 6.029 5.911

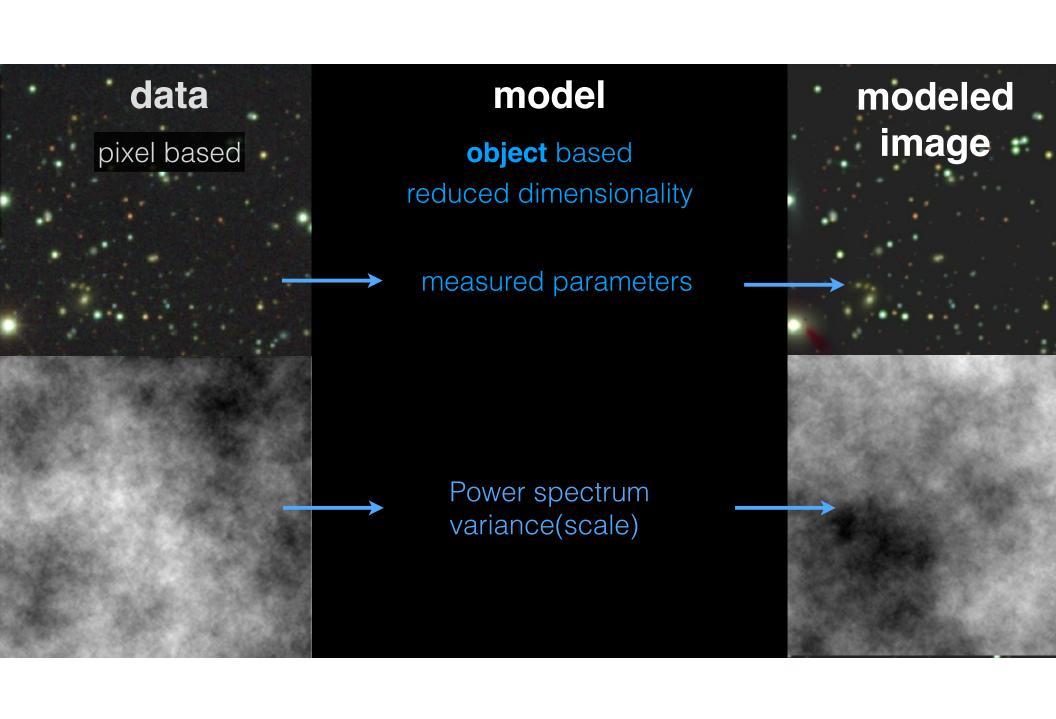
 5.802 5.613 5.467 5.351

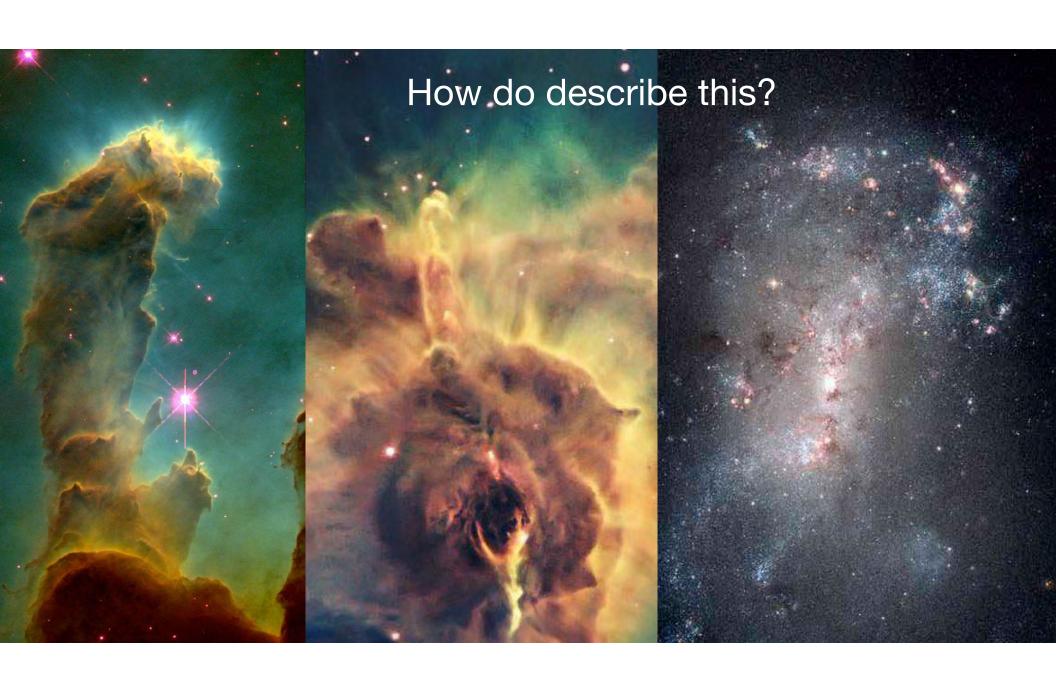
 5.386 5.200 5.057 4.942

easier working environment

- → catalog/database (searchable)
- → correlations, constrain models

modeled image



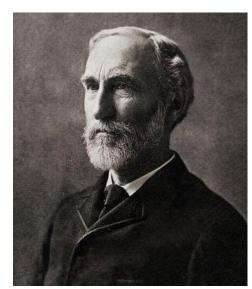


How do we do science?

"One of the principal objects of theoretical research is to find the point of view from which the subject appears in the greatest simplicity."

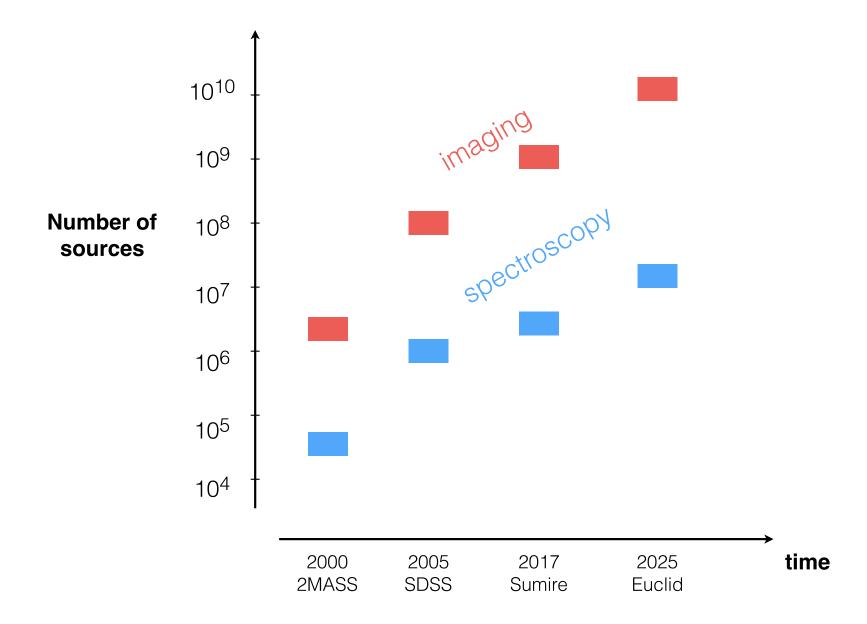
(Gibbs, 1881)

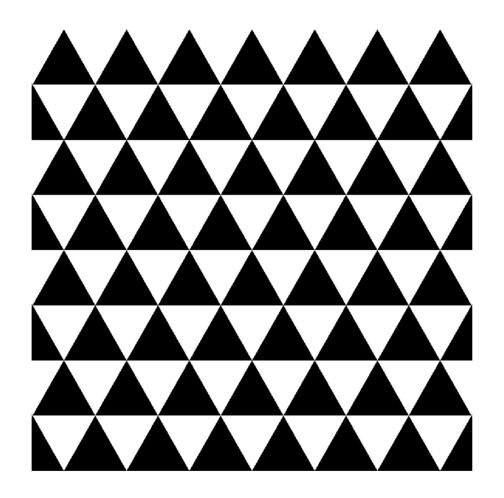
Complex world Simplicity

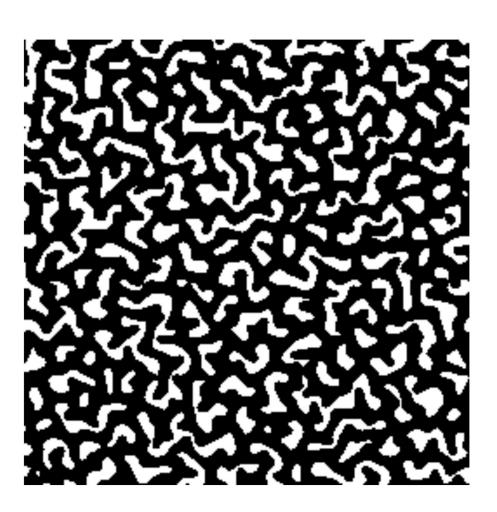


Josiah Willard Gibbs (1839 – 1903)

- Visual insight has been an important guide in science for centuries.
 - → visual insight is receding
- We attempt to describe what we see using the language of physics & statistics.
 - → complexity can be a limitation

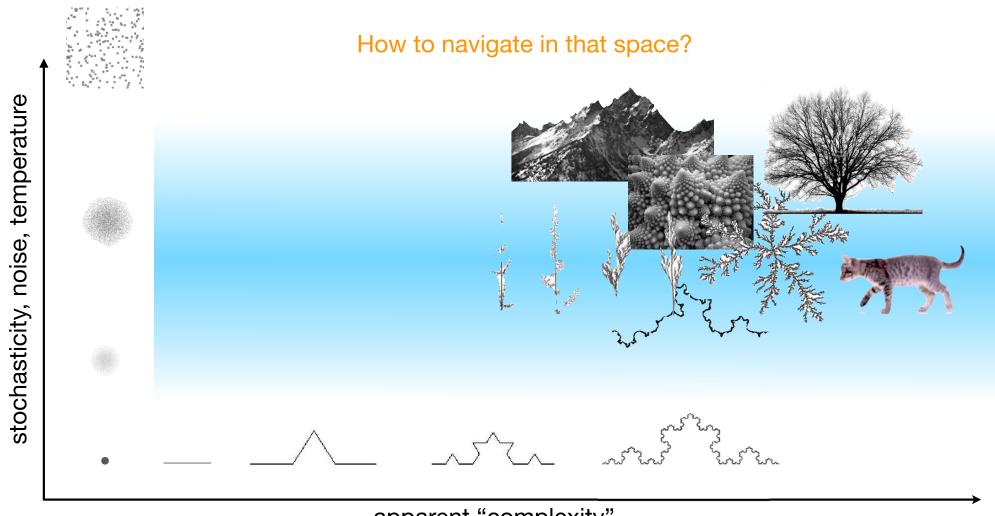






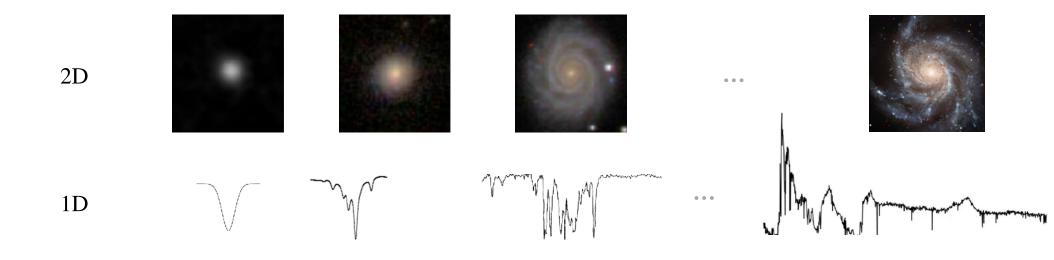
Language can be a serious limitation

apparent "complexity" # of scales, description length, computational cost

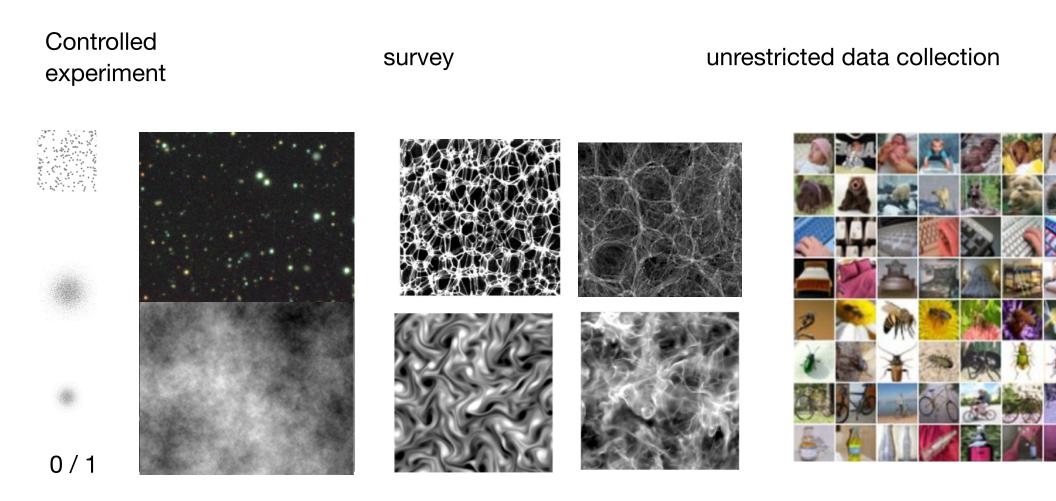


apparent "complexity" # of scales, description length, computational cost

How to navigate in that space?

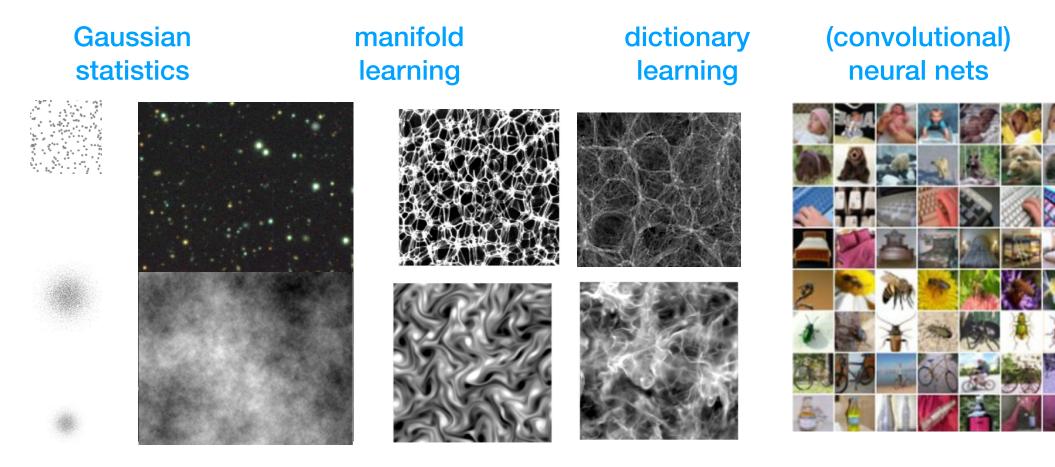


apparent "complexity" # of scales, description length, computational cost

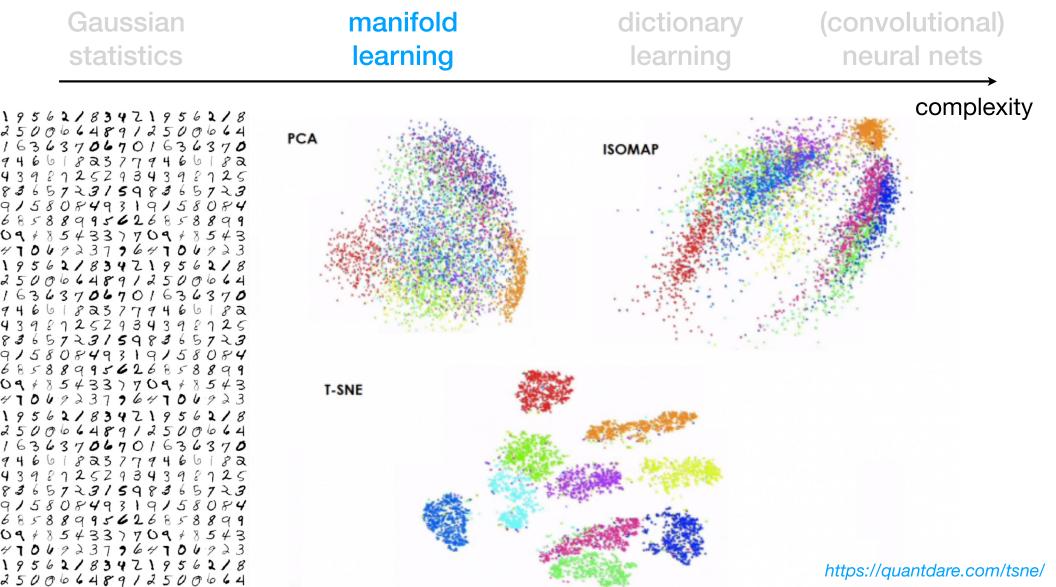


apparent "complexity" # of scales, description length, computational cost

interpretability challenge, control of systematics



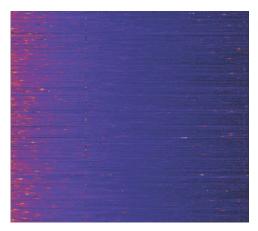
apparent "complexity" # of scales, description length, computational cost

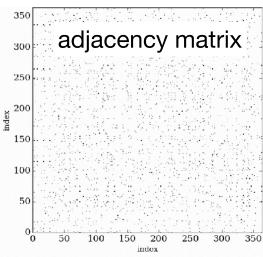


manifold learning

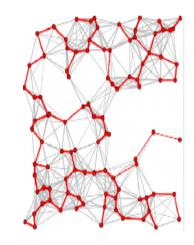
dictionary learning

(convolutional) neural nets



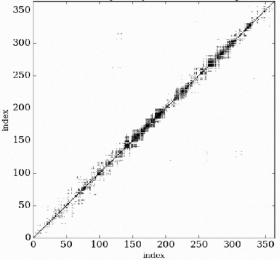


The Sequencer.org

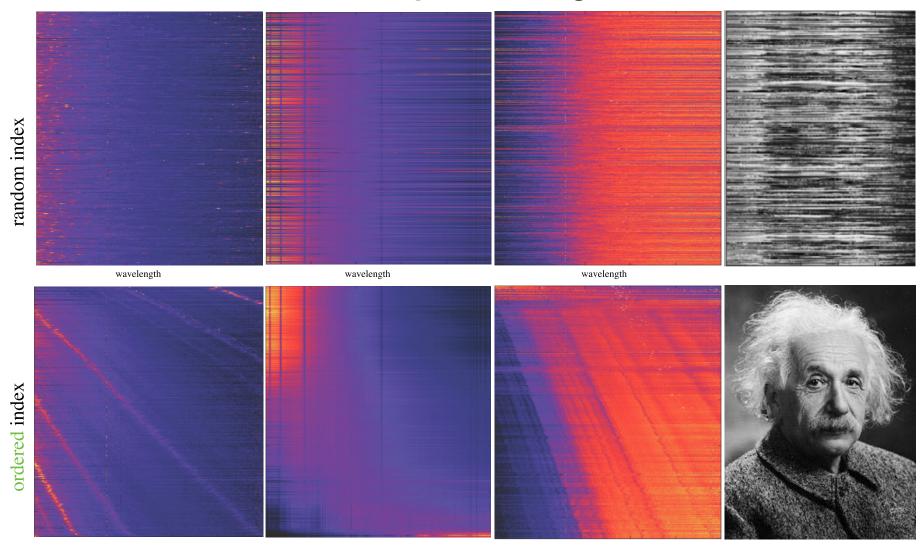


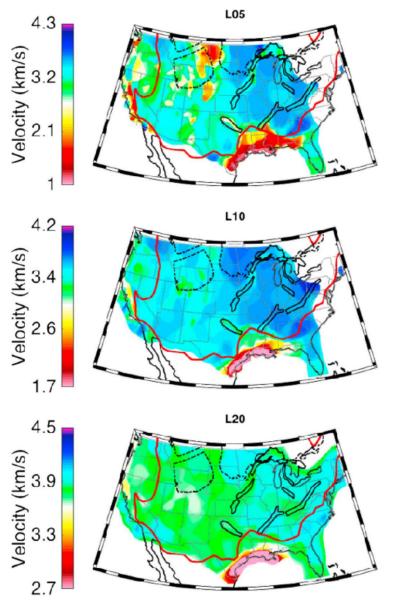
sequence found using geometric properties

D. Baron & BM (in prep)

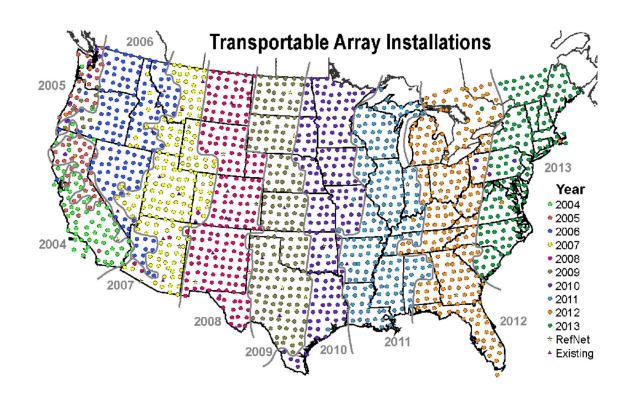


The Sequencer.org

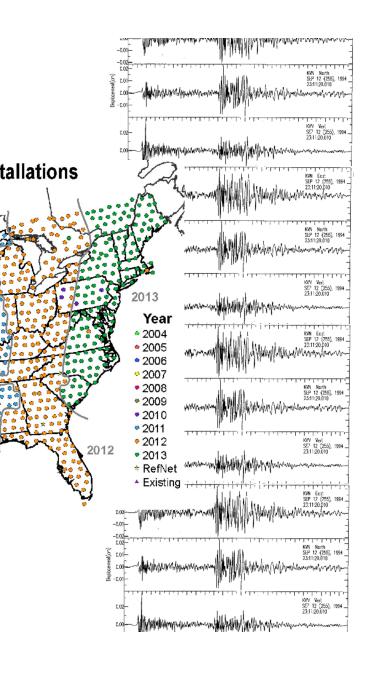




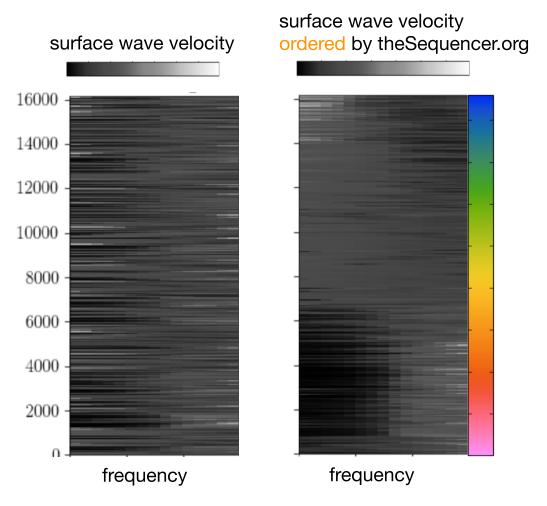
Map making in seismology



with V. Lekic (Univ. of Maryland)

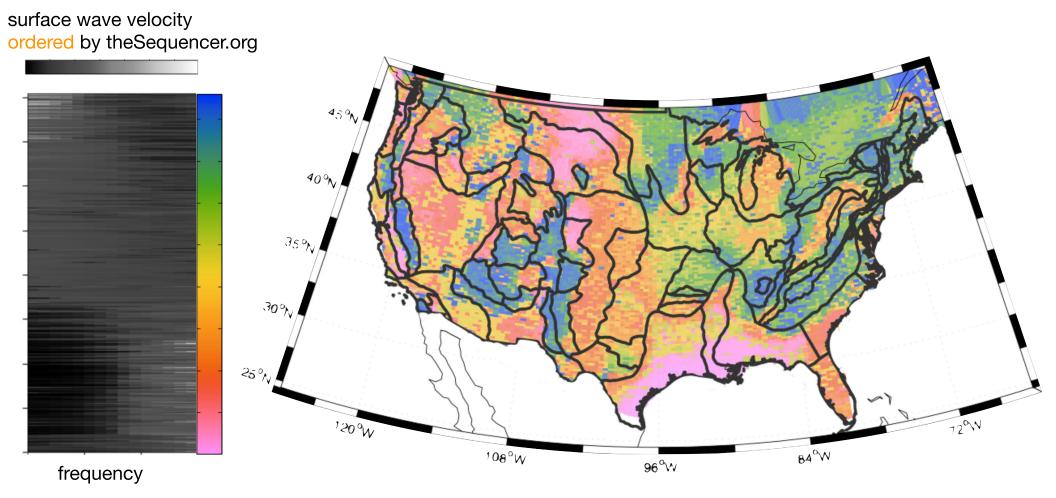


Map making in seismology



with V. Lekic (Univ. of Maryland)

Map making in seismology



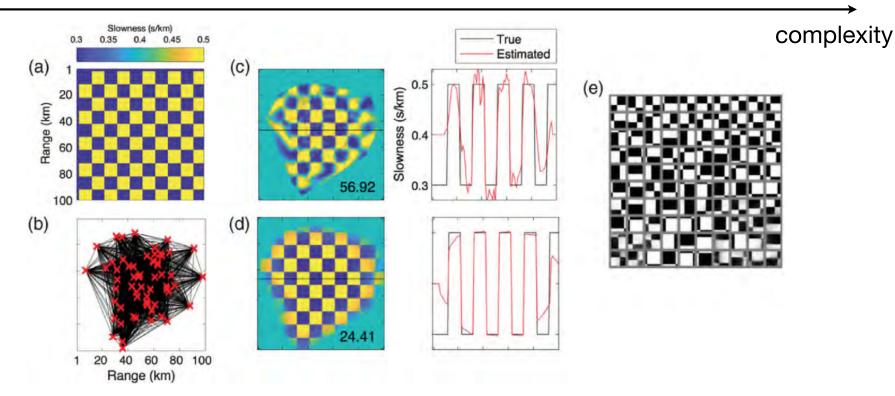
with V. Lekic (Univ. of Maryland)

Gaussian statistics, PCA

manifold learning

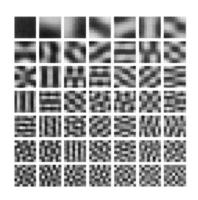
dictionary learning

(convolutional) neural nets

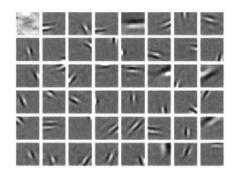


▲ Figure 7. Locally sparse travel-time tomography (LST; Bianco and Gerstoft, 2018) of checkerboard slowness. (a) Synthetic checkerboard slowness patterns with 100 × 100 pixel grid (km) are sampled by (b) 2016 straight rays from 64 seismic stations. (c) Conventional inversion using damping and smoothing regularization (Aster et al., 2011) and (d) LST. Profiles from the 2D inversion are shown with true and estimated slownesses. The root mean square error (ms/km) estimated relative to the true slowness is printed on the 2D estimates. (e) Dictionary learned from LST contains checkerboard-like atom (100 atoms shown). Each atom (patch) is 10 × 10 pixels.

from Kong et al. (2019)



Principal Component Analysis



Emergence of simple-cell receptive field properties by learning a sparse code for natural images

Bruno A. Olshausen* & David J. Field

Department of Psychology, Uris Hall, Cornell University, Ithaca, New York 14853, USA

kernels learned in the first layer of a deep convolutional neural net with ImageNet

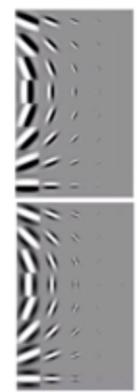
wavelets (Gabor filters) Gaussian statistics, PCA

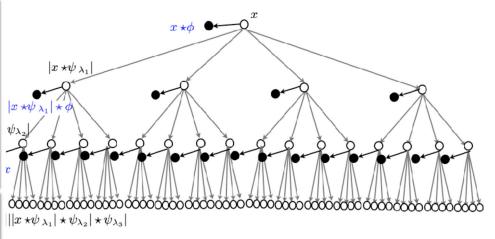
manifold learning

dictionary learning (convolutional) neural nets

The scattering transform

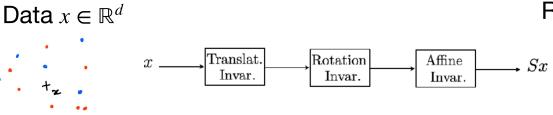
complexity





Invariant to:

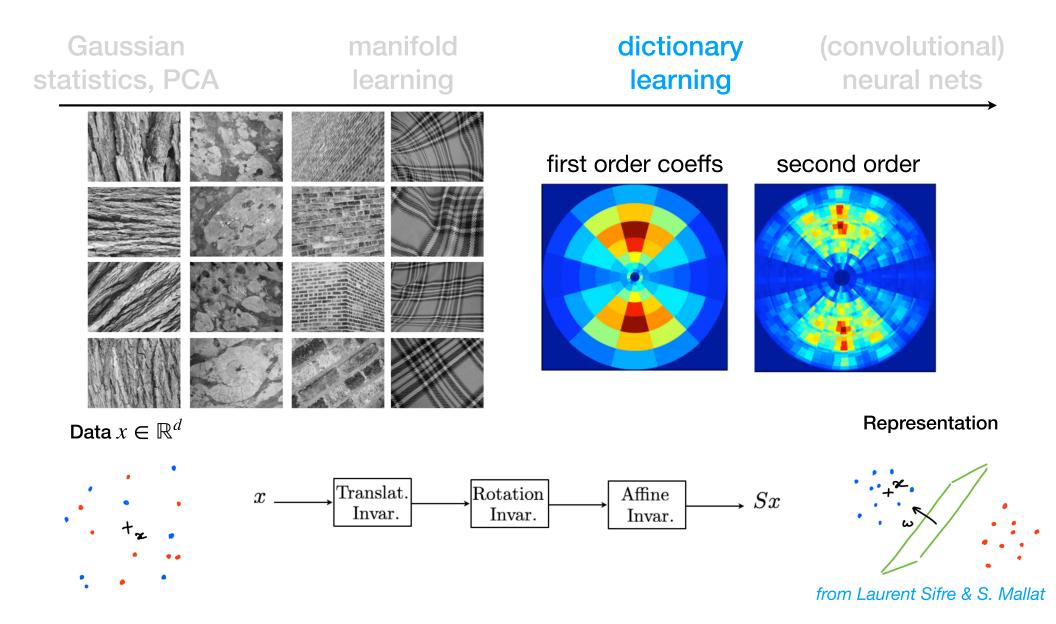
- translations
- rotations
- small deformations



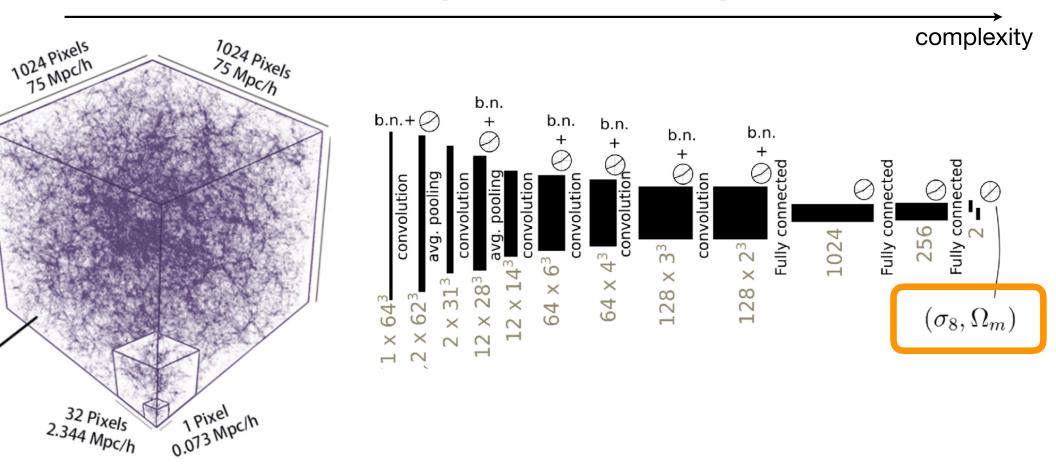
Representation



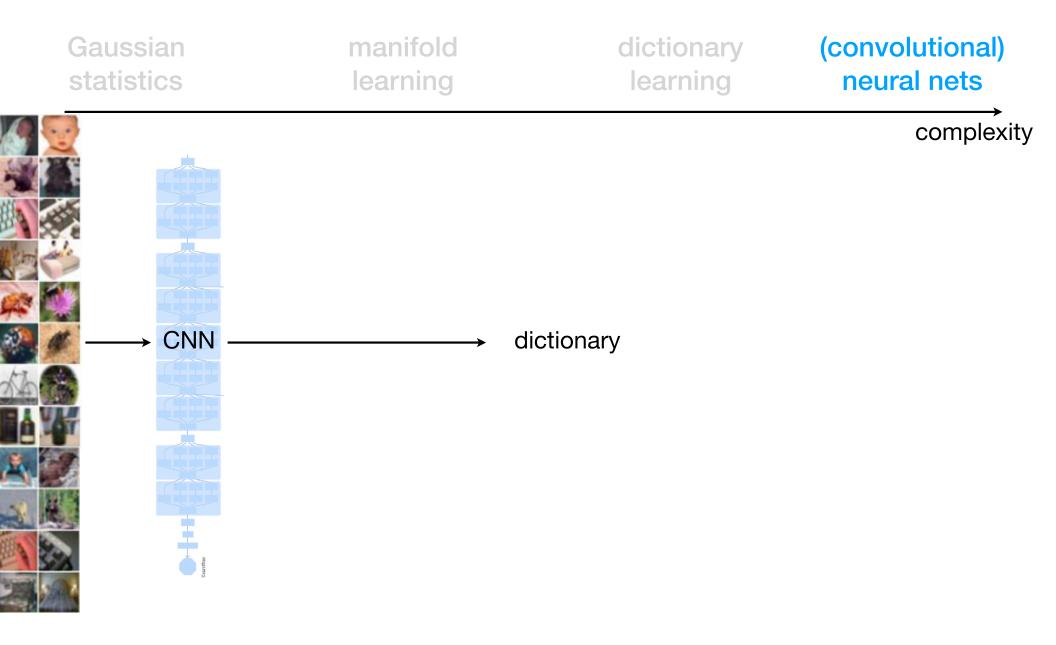
J. Bruna & S. Mallat



dictionary learning (convolutional) neural nets



Ravanbakhsh et al. (2016)



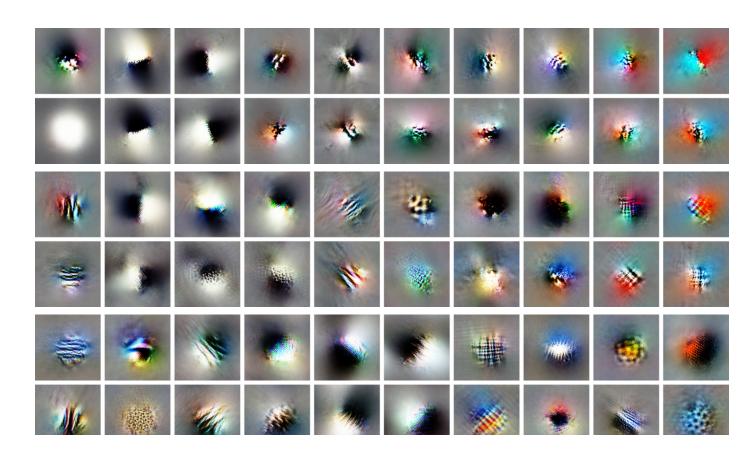
Gaussian statistics, PCA

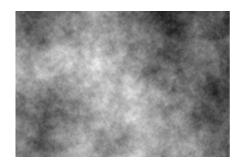
manifold learning

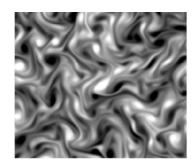
dictionary learning (convolutional) neural nets

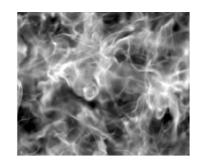
complexity

collaboration with OpenAl







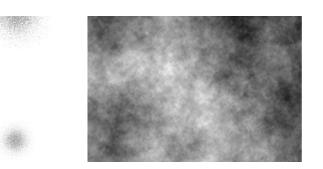


complexity

As scientists, we want to describe/explain the complex world

We want to go from complexity to simplicity.

This requires an efficient language.



complexity

Gaussian statistics

manifold learning

dictionary learning (convolutional) neural nets

Huge space to explore

Simplicity found in:

parameters

geometry

vocabulary

classes

Challenges:

interpretability, control of systematics