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Terabytes

Need to work with massive data volumes
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A single DAS experiment
can generate this much
data in a few months.

How are we going to
process this data?

Can we move this much
data around? Should we
even try?



Dark (Legacy) Data

~33
years
Analog data Digital data
from 1889 standard by

the 80s




Time increases left to right (time code is
at top) and each line is a channel

Lines overlap when things get
interesting - the bigger the earthquake
the greater the overlap (and the fainter
the trace).

Difficult to disentangle traces to get
time series that we can analyze by
standard methods.

Work with the Image

(avoid vectorization)

Wang et al. (2018)
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Revisiting the Rangely Earthquake Control Experiment
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How to diffuse Al through the geosciences?

Models and simulations
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Seismology 2> Earthquake Science

- Network seismology

- LIDAR topography

- GNSS and InSAR

- Simulation/Modeling

- Exploring relationships (e.g., forecasting)



How to choose the right approach?



PageRank for Earthquakes: cluster similar waveforms to
extract LFEs from tremor (Aguiar and Beroza, 2014)

FAST: Data mining for repeating signals without templates
(Yoon et al., 2015)

CRED: Deep learning for earthquake detection
(Mousavi et al., 2019)

DeepDenoiser: Deep learning for denoising
(Zhu et al., 2019)

PhaseNet: Machine learning for phase picking
(Zhu et al., 2019)

Deep Autoencoder: Deep learning to discriminate
earthquake types with few data. (Mousavi et al., 2019)

—

—

—

Unsupervised:
exploits similarity
in unlabeled data

Supervised: learns
from labeled data

Self-supervised: reduces
dimensionality




DeepDenoiser learns signal and noise
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Signal — Noise Separation
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Some potential applications

Conventional Seismic Monitoring
Other Analysis (e.g. receiver functions)
Urban Seismic Monitoring
- MeSONet (Tokyo)
- Nodal Array data (Long Beach)
- DAS
Seafloor Seismic Monitoring
- OBS
- S-Net (Japan)
- DAS
Volcano Monitoring
Also useful for “de-signaling”
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What is ground truth?



Ground truth? Analyst-reviewed picks have errors
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Ground truth? Analyst-reviewed picks have errors
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Test of PhaseNet on data from Apennines
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Dep (m)

HypoDD (STA/LTA + AIC)
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Before: 75 catalog earthquakes, 1.2 <M, < 2.9
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FAST Detection Pipeline

Continuous waveform data
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After: 14,604 detected earthquakes, -1.5 <M, < 2.9

35.4°N

km
10 e —
2 10
8 ~
7 €
- 6 =
= 5 E
= 4 %
- 3
35.3'N —1 > B
1 oe® °
0
©
Yoon et al. W
(2017) Greent rier .
35.2°N
92.5°'W 92.4°'W 92.3'W 92.2°W 92.1°"W



km

O

EveEEY#

144%%%:3

c9ccv#

68ECv#

ovIev#

uebaq uolne|nwils asuls sheq
O I AN ©O 00 ©O F AN O

- Y 7T T

35.36°N

35.35°N A

35.34°N

Yoon et al.
(2017)

92.31°'W 92.3°'W 92.29°'W 92.28°'W

92.32°'W



Generalization?



Similarity Search for Earthquakes

Informed Search: Template matching or subspace projection of
known event waveforms.

Uninformed Search: Discovery of templates through naive
correlation, Pagerank clustering, or approximate search by LSH.

Generalized Similarity Search: Generalization of strict similarity
search to more permissive similarity in waveform characteristics

using machine learning.
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Depth (km)

Park et al. (2019)
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How to quantify uncertainty?
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Data sets and data challenges



Curated Data Sets/Benchmarks
1.2 M seismograms. 500k earthquakes. STanford Earthquake Dataset (STEAD)
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{'back_azimuth_deg': 141.5,

'category': 'earthquake',

‘coda_end_sample': 2951,
‘earthquake_depth_km': 13.9,
‘earthquake_distance_deg': ©.7026,
'earthquake_distance_km': 77.99,
‘earthquake_id': 'ci37917624',
'earthquake_lat': 34.801,

‘earthquake_lon': =116.9018,
'earthquake_magnitude': 3.5,
P 5 4 ‘ ‘earthquake_magnitude_type': 'ml’,
40-80 km 8 ) : : TERs Y 3 : 'earthquake_origin_time': '2017-06-25 13:53:24.760000"',

) AN : AL Nt : A ‘file_name': 'ADOD.CI_2017062513533@_EV',

: p 2 ‘instrument_type': 'HH',
‘network_code': 'CI',

‘p_arrival_time': '2017-06-25 13:53:37.650',
‘p_status': 'manual’,

‘p_travel_sec': 12.89,

'p_weight': @.46,

's_arrival_time': '2017-06-25 13:53:47.650',
's_status': 'manual’,

's_weight': @.5125,

‘snr_db': [39.3, 39.5, 36.5],
‘station_elevation_m': 908.0,

'station_lat': 34.55046,
10-20 km ‘station_lon': -117.43391,

'station_nama': 'ADO',

'trace_start_time': '2017-86-25 13:53:30.650000'}

Signals and noise Extensive QC  Additional Labels Mousavi et al. (2019)
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STanford EArthquake Dataset (STEAD):
A Global Data Set of Seismic Signals for
Al

S. MOSTAFA MOUSAVI', YIXIAO SHENG', WEIQIANG ZHU', and GREGORY C. BEROZA'

1Geophysics Department, Stanford University, 397 Panama Mall, Stanford, 94305-2215, CA, United States (e-mail: mmousavi@stanford.edu)

Published in IEEE Access
Data-science-friendly data format
Seismology 101

Get data scientists interested in our problems



SeismOlympics: Phase picking for 2008 Wenchuan aftershocks

1100+ teams (4000 participants)

$50,000 in prize money

Ground truth based on CEA
analysts

Fang et al. (2017)



@ Research Prediction Competition

LANL Earthquake Prediction | $50,000

Can you predict upcoming laboratory earthquakes? Prize Money

. Los Alamos National Laboratory(¢ 4,540 teams); 5 months ago

Overview Data Notebooks Discussion Leaderboard Rules

Data Description

The goal of this competition is to use seismic signals to predict the timing of laboratory earthquakes. The data comes from a well-
known experimental set-up used to study earthquake physics. The acoustic_data input signal is used to predict the time remaining
before the next laboratory earthquake ( time_to_failure).

The training data is a single, continuous segment of experimental data. The test data consists of a folder containing many small
segments. The data within each test file is continuous, but the test files do not represent a continuous segment of the experiment; thus,
the predictions cannot be assumed to follow the same regular pattern seen in the training file.

For each seg_id in the test folder, you should predict a single time_to_failure corresponding to the time between the last row of



» Los Alamos
NATIONAL LABORATORY
EST.1943

() 0)

-4 PennState

PURDUE

UNIVERSITY:.

Department of Energy

Geophysics Group: The competition builds
on initial work from Bertrand Rouet-Leduc,
Claudia Hulbert, and Paul Johnson. B. Rouet-
Leduc prepared the data for the competition.

Department of Geosciences: Data are from
experiments performed by Chas Bolton,
Jacques Riviere, Paul Johnson and Prof. Chris
Marone.

Department of Physics & Astronomy: This
competition stemmed from the DOE Council
workshop “Information is in the Noise:
Signatures of Evolving Fracture and Fracture
Networks” held March 2018 that was
organized by Prof. Laura J. Pyrak-Nolte.

Office of Science, Basic Energy Sciences,
Chemical Sciences, Geosciences and
Biosciences Division: The Geosciences core
research.
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Psi
1st place

1st place solution @ 181

posted in LANL Earthquake Prediction 5 months ago

Thanks a lot to the hosts of this competition and congratz to all participants and of course to my amazing
teammates.

What made this competition tricky was to find a proper CV setup that you believe in as the public LB
gave bad feedback for private LB. This was my first competition where this was the case and it took me a
while to completely ignore public LB, but it was necessary.

| will now try to summarize some of the main points that helped us to win this competition. | am posting
these elaborations in the we-form as we are a team and everyone contributed ideas and knowledge.
Special thanks to @ilu000 @dott1718 @returnofsputnik @dkaraflos @pukkinming who worked hard the
last few weeks on the comp.

Acoustic signal manipulation and features

As has been discussed in the forums and shown by adversarial validation, the signal had a certain time-
trend that caused some issues specifically on mean and quantile based features. To partly overcome this,
we added a constant noise to each 150k segment (both in train and test) by calculating
np.random.normal(@, 0.5, 150_000) . Additionally, after noise addition, we subtracted the median
of the segment.

Our features are then calculated on this manipulated signal. We mostly focused on similar features as
most participants in this competition, namely finding peaks and volatility of the signal. One of our best
final LGB model only used four features: (i) number of peaks of at least support 2 on the denoised signal,
(ii) 20% percentile on std of rolling window of size 50, (iii) 4th and (iv) 18th Mel-frequency cepstral
coefficients mean. We sometimes used a few more features (like for the NN, see below) but they are
usually very similar. Those 4 are decently uncorrelated between themselves, and add good diversity. For
each feature we always only considered it if it has a p-value >0.05 on a KS statistic of train vs test.



Recommendations

Accelerate progress and expand
applications across geosciences

Keep up with state-of-the-art and
recruit data scientists to work on
our problems

Promote best practices and
understand limitations

Use domain knowledge in
problem solving.

Bergen et al. (2019)
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