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The problem: Local tsunami warning

Local warning is forecasting 
tsunami hazards before they 
impact the coastlines adjacent to 
a rupture.

It requires characterizing the 
tsunami in minutes

It remains a challenging problem 
in all tsunami prone regions

Williamson et al., JGR, 2019
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Our solution: Land-based GNSS

Grapenthin et al. (2012, GRL)

2011 M9 Tohoku-oki
1Hz GNSS



Our solution: Land-based GNSS

Vigny et al. (2010, 
Science)

CONS

2010 Maule, Chile
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GNSS correlates to tsunami impacts

Vigny et al. (2010, Science) Klein et al. (2017, EPSL)NASA/JPL

2011 M9.0 Tohoku-oki
5m displacements

30m+ tsunami

2010 8.8 Maule
5m displacements

20m tsunami

2015 8.3 Illapel
2m displacements

10m tsunami



GNSS correlates to tsunami impacts
Duputel et al.
(2015, GRL) Nocquet et al. (2016, Nat. Geo)

Crowell et al. (2012, GRL)

2014 M8.1 Iquique
1-2m displacements

2m tsunami

2003 M8.3 Tokachi-oki
0.5m displacements

1m tsunami

2016 M7.8 Ecuador
1m displacements

1m tsunami



The correlation is complex

6m

Melgar et al. (2016, GRL)

2015 M8.3
Illapel, Chile



The correlation is complex

Gabriel Vargas
U. De Chile

Seconds after epicentral time

PFRJ



GNSS identifies non-events as well

Large near-trench earthquake
Strike-slip mechanism
Tsunami < 20cm
PTWC issued warning for 
Alaska & U.S. West CoastUNAVCO



GNSS identifies tsunami earthquakes too

2010 M7.8 Mentawai, Indonesia
~15m tsunami

A tsunami earthquake produces a 
tsunami much larger than what would 

be expected for its magnitude



Sahakian et al. (2019, GRL)

Hill et al. (2012, JGR)

( )

GNSS identifies tsunami earthquakes too

2010 M7.8
Mentawai, Indonesia



Sahakian et al. (2019, GRL)

Hill et al. (2012, JGR)

( )

These events shake like a magnitude 6 but make a tsunami like a magnitude 9

GNSS identifies tsunami earthquakes too



Sahakian et al. (2019, GRL)

GNSS identifies tsunami earthquakes too



Sahakian et al. (2019, GRL)

GNSS identifies tsunami earthquakes too



We need a flexible algorithm
Our working hypothesis is that time-
dependent GNSS can be used to 
forecast tsunami impacts

GNSS contains information that 
correlates strongly to the deformation 
of the seafloor

But the relationship is not simple and 
traditional seismological algorithms 
do not perform well for all potential 
situations

UNAVCO

Sahakian et al. (2019, GRL)



We need a flexible algorithm

Our solution is to use machine 
learning

The challenge is to develop a large 
enough dataset for training

We solve this through simulation

Cascadia 
M8.6



Fakequakes and Geoclaw: Simulating large events

Can we simulate O(100k - 1M) realistic earthquakes, GNSS 
waveforms, and tunsamis?

Can we train a time-dependent ML algorithm to evaluate the 
earthquake and forecast hazards?



Fakequakes and Geoclaw: Simulating large events

Stochastic slip models based on 
findings by Mai & Beroza (2002)
Kinematic parameters modified from 
Graves & Pitarka (2010)
Parameter space is defined by what has 
been observed in real events
• Correlation lengths & Hurst exponent
• Rupture speeds
• Rise times
• Stress drops
• Etc.

Fakequakes: Cascadia M9

Melgar et al. (2016, JGR)



Fakequakes and Geoclaw: Simulating large events

Fakequakes: Cascadia M8.6

Parallelized and efficiently generates simulated 
GNSS across a large network

Assumes some reference Earth model and 
includes deterministic propagation effects

Melgar et al. (2016, JGR)



Fakequakes and Geoclaw: Simulating large events

GeoClaw: Tohoku-oki M9.0

GPU/CPU code that solves 
the shallow water equations 
(Qin & Leveque, 2019)

Uses adjoint methods for 
efficiently guiding the mesh 
refinement (Davis et al., 
2016)

Includes inundation effects
100km

10km

Sendai
Bay

Fukushima 10km

Sendai
Bay

Melgar & Bock, 2015, JGR



Fakequakes and Geoclaw: Simulating large events

Can we simulate O(100k - 1M) earthquakes, GNSS waveforms, and tunsamis?

Can we train a time-dependent ML algorithm to evaluate the earthquake and 
forecast hazards?

We use Chile as the testing ground because it has had 5 large events 
recorded by GNSS



Simulations in Chile
Subduction geometry 
from Slab 2 (Hayes et 
al., 2019)

50,000 simulated 
earthquakes (M7.5-
M9.5) range

GNSS data at 121 
locations from the 
operational network

5 real events that can 
be used as validation

M9.3

Lin et al. in prep



Simulations in Chile

Lin et al. in prep

Subduction geometry 
from Slab 2.0 (Hayes et 
al., 2019)

50,000 simulated 
earthquakes (M7.5-
M9.5) range

GNSS data at 121 
locations from the 
operational network

5 real events that can 
be used as validation



Building an RNN

We need a temporally 
dynamic algorithm.

It’s not just about what is  
happening now.

The short-term history
of the event has value

We use a standard 
recurrent neural 
network architecture

Lin et al. in prep



Building an RNN

First we simply predict magnitude
Data is provided at 5s increments

Lin et al. in prep
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Hochreiter & Schmidhuber, 
1997

Magnitude 
at 5s

Magnitude 
at 10s

Magnitude 
at 15s

GNSS at 5ss GNSS at 10s GNSS at 15s



Building an RNN

Lin et al. in prep

First we simply predict magnitude
Data is provided at 5s increments



RNN training steps

1) Pick rupture from available 
simulations
2) Add realistic GNSS noise
3) Randomly remove stations
(set existence code)
4) Repeat steps 1-3 for 256 
times to generate a minibatch
5) Train with 10,000 mini 
batches
• Train with 80% validate with 

20%
6) Labels are the final
magnitudes of the events

Lin et al. in prep

Melgar et al. in review



RNN Performance on Validation Data

Magnitude  prediction

Lin et al. in prep

30s

60s

100s



RNN Performance on real events

Lin et al. in prep



RNN Performance on real events

Lin et al. in prep



RNN Performance on real events

Lin et al. in prep



But who cares about the earthquake?

Hochreiter & Schmidhuber, 
1997

Tsunami forecast 
Every 10km at 5s

GNSS at 5ss GNSS at 10s GNSS at XXs

Tsunami forecast 
Every 10km at 10s

Tsunami forecast 
Every 10km at XXs

Lin et al. in prep

Train the RNN to forecast the hazard. In this context properties 
of the earthquake source are unimportant



Can we forecast the tsunami? First results
Predict the tsunami amplitude 
at the coastline

Take the peak value over 
10km bins

Use threat levels defined by 
NOAA (different for JMA)

Only tested on Cascadia
simulations, now expanding to 
Chile data set

Validation is challenging but 
we have surveys/tide gauges
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M8.6

Williamson et al. in prep

Observed

Predicted



The holy grail: Inundation modeling
The ultimate goal is to 
forecast inundation and 
eventually damage

This is exceedingly difficult 
in a rapid response setting

It is very sensitive to fine 
scale structure of the 
tsunami

Requires more complex 
computations Tsunami (m)
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Why does this (tentatively) work?

Because the physics is (fairly) well 
understood

The different modeling steps are robust 
and validated. They map well to reality

And we can efficiently run many 
simulations and adequately sample the 
range of possible behaviors



Other hazards: Towards shaking forecasts
Combine GNSS with 
seismic data
We can generate 
broadband seismograms
It’s slower but possible
Details of the source and 
path are much more 
important
Relies on approximate
(semi-stochastic) methods
Do we know enough about 
the process for this to be 
meaningful?

Goldberg et al., in prep



Without a physical understanding there is no forecast

M7.5 Palu, Indonesia
Tsunami = 8m+

Williamson et al. in review



Summary

Machine learning provides a great way 
to establish complex correlations
between GNSS observations and 
earthquake hazards

For tsunamis this works well because 
the underlying physics is well 
understood

And so we can efficiently run many 
simulations and adequately sample 
the range of possible behaviors



Summary

The physical connections between 
earthquakes and other hazards are less well 
understood

But as our knowledge of these improves these 
methods will become important

GNSS is comparatively simple but in the future 
a diversity of geophysical data feeding 
algorithms  will be the norm.



Challenges
For earthquake hazards in particular:

• How does the wedge deform?
• Where is strong shaking generated?
• How does shaking trigger subaerial/submarine land 

sliding?

Multiphysics simulations that capture all the relevant 
phenomena

Large events are comparatively rare. The simulation  -> 
ML path requires very efficient codes.(1x105 simulations)

Capacity building. There are still barriers to entry for 
massive parallels computing and machine learning 
methods



Thanks!

Thanks!


