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Local tsunami warning for Cascadia: 
The challenges ahead





Neskowin Ghost Forest, OR
Large (M9) events roughly every 300 years
Last one (~M9) on January 26th, 1700



The Cascadia Subduction Zone

2 in/yr
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Sistemas de alerta internacional (NOAA)

Global Warning 
Hours of lead time

Japan is the only country in the world with a purpose 
built operational local warning system

Local 
warning

Minutes of 
lead time



Local Warning in Practice: The Tohoku Experience
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Fault Areas of some California earthquakes

Rapid determination of an earthquakes size and rupture 
characteristic is tricky.

20Mi

1989 Loma Prieta M6.9

1992 Landers M7.3

1994 Northridge M6.7

2010 Mexicali M7.2

2014 Napa M6.1



100Mi

2011 M9.0 Japan

2010 M8.8 Chile

2004 M9.2 Sumatra

Fault Areas of large earthquakes
Rapid determination of an earthquakes size and rupture 
characteristic is tricky.

Seismometers have a 
really hard time 

measuring things this big



So we use high precision GPS

15ft

1in!



Grapenthin et al., 2012

2011 M9 Tohoku-oki

El GPS is the best sensor for very large EQs



We know it works
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GPS also discriminates the “type” of earthquake

M7 strike-slip M7 Thrust



These happen in the real world

2018 M7.8 Alasaka 
<30cm tsunami

2010 M7.8 Indonesia 
19m tsunami

USGS, NEIC Yue et al., 2014



GPS in the western US
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How good are the rapid intensity models?

Nathan Becker & Dailin Wang PTWC, NOAA
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Melgar et al., GRL, 2016

GPS model
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How good are the rapid intensity models?

Nathan Becker & Dailin Wang PTWC, NOAA

GPS driven models will be fast
Tsunami forecasts will be “good enough”

Some level of uncertainty will remain
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How do we test the systems?

M8.7
Large earthquakes are infrequent, 
how do we know systems work? 
We create “scenarios” thousands 
of them and push them through 
the system. 
How well do we model 
earthquakes?
How well do we model tsunamis?

M8.7

Ruhl et al., GRL, 2017



Scenarios in Cascadia

Ruhl et al., GRL, 2017
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Large earthquakes 
are infrequent, how 
do we know systems 
work? 
We create 
“scenarios” 
thousands of them 
and push them 
through the system. 
How well do we 
model earthquakes?
How well do we 
model tsunamis? 1300 scenario tests
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So how are we doing?

M9

The outlook is overall positive, with continued effort warning 
for a Cascadia M9 earthquake in under 5 minutes will be 
possible. 

The key components, GPS and tsunami modeling, are there. 

We are now on the road from research to operations. 

Testing the operational environment will be important as well. 

Are we done?



So how are we doing?

M9

Earthquakes and tsunamis are 
complex 

What I’ve described here is 
indirect warning, we measure 
the earthquake not the tsunami 

Indirect warning is inherently 
uncertain 

What are the new technologies?

2018 M7.8 Alasaka 
<30cm tsunami

2010 M7.8 Indonesia 
19m tsunami

USGS, NEIC

Yue et al., 2014



\
Shin Aoi, NIED

Real-time cabled 
sensors 
Will directly measure the 
tsunami  
The fastest most reliable 
way to issue accurate 
local warnings 
It is also useful for basic 
science 
It’s costly, ~$500M 
buildout and $5M/yr 
operations 



A real-time ocean bottom network

Is there a sufficiently relevant societal 
impact to warrant this expenditure? 

(likely $1bn+)

Wilcock et al., 2016, SZO white paper





How good are the rapid intensity models?



An example: The 2004 Indonesia Tsunami

It takes 10 minutes!

Motion of the seafloor



An example: The 2004 Indonesia Tsunami

Waves of up to 50ft



A tsunami’s speed

Depth (ft) Speed (mi/hr)

15,000 500

3000 222

1500 158

300 70

Deep ocean

Continental shelf

Coast

Continental shelf



When does the tsunami arrive?

160mi

First waves arrive in 
20-40mins



80mi

First waves arrive in 
5-20mins

When does the tsunami arrive?

40mi



Second line of defense, buoys!
Buoys measure the actual tsunami
Very precise but it might be too late 
for those closest to the earthquake



How well do we 
model the tsunami?

How do we test the systems?
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Can we map out the shallow megathrust?
Going from reactive to active. 
Locking models from Schmalzle et al. (2014, G3) 
Use backslip model to calculate inter-seismic velocities

Melgar et al., in prep
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Can we map out the shallow megathrust?
Going from reactive to active. 
Locking models from Schmalzle et al. (2016, G3) 
Use backslip model to calculate inter-seismic velocities

Melgar et al., in prep

How do we imagine heterogeneity 
of the shallow megathrust?



The timeline for warnings
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Minutes after OT

Event origin 22:54 UTC

5min: PTWC bulletin #1 
M=7.9 , Tsunami ampl.=N/A
5min: CSN W-phase M=8.1

8min: SNAM tsunami bulletin #1
M=7.9 , Tsunami ampl.=N/A

14min: Tsunami first arrival at PICH 

tide gauge

16min: ONEMI issues evacuation 
order for all coastal regions of Chile

19min: SNAM tsunami bulletin #2
M=7.9 , Tsunami arrival times

20min: NEIC W-Phase, M=8.3

CSN W-phase update, M=8.4

20min: First maximum at PICH tide gauge

31min: First maximum at VALP and QUIN 

tide gauges

31min: PTWC bulelting #2
M=8.3 , Tsunami ampl. = 3m possible for all Chile

10min

20min

30min

: 

A B

Melgar et al., GRL, 2016

4m at tide gauge 
~11m from survey

Tsunami warning centers 
have the operational goal to 

issue warnings in 20-30 
minutes

2015 M8.3 Illapel, Chile



A real-time test
M8.3 Tokachi-oki 
Japan earthquake

Melgar et al., 2011


