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Glacial isostatic adjustment (GIA)
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* Elastic response

* instantaneous deformation of solid earth
* instantaneous change in ocean volume
* instantaneous change in shape of geoid

* Viscous response
* time-decaying earth deformation
* no change in ocean volume
* |nstantaneous change in shape of geoid



Present-day sea level change due to "background’ GIA

Sea level change (mm/yr)

Numerical Prediction of present-day rate of global sea-level change due to ongoing
glacial isostatic adjustment

ICE5G/VM2 from Peltier, 2004; after Mitrovica and Milne, 2002
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Earth’s viscosity

The Motion of a Viscous Fluid Under a Surface Load

N. A. HAskELL, Massachusetls Institute of Technology
(Received April 25, 1935)

A formal solution is given for the motion of a highly viscous fluid when a symmetrical pressure
is applied at the surface. This is applied to the subsidence of a cylindrical body of constant
~ thickness and to the recovery of the fluid after removal of a load. Applying the latter case to
the plastic recoil of the earth after the disappearance of the Pleistocene ice sheets, it is found
that the geological data imply a kinematic viscosity of the order of 3 X10% c.g.s. units.

Dynamic viscosity of ~ 1021 Pa s

Relative Sea Level (m)

Uplifted beaches: decay time only
sensitive to Earth’s viscosity
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Earth's viscosity and past ice history
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Video available at

Earth’S |Ce SheetS aﬂd Sed |6V6| https://www.ldeo.columbia.edu/~jackya/teaching.html
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lce sheet reconstructions

Laurentide ice sheet at 18 ka

Gowan et al.,, 2016 Lambeck et al., 2017 Peltier et al., 2015

Outstanding questions:

More detailed size and evolution of all ice sheets
“Missing ice problem” at the Last Glacial Maximum
Contribution from different ice sheets to Meltwater Pulse 1A and other meltwater events
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Earth's viscoelastic structure

Earth’s internal
viscosity varies
laterally.

Relies on seismic
tomography and
rheological laws
(uncertainties).
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Accounting for this
in GIA calculation is
computationally

expensive.
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Remaining data — model misfit
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Inverting GIA models with data
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» Stress field
* Rotational state



Sensitivity kernels

Seismic tomography

Earthquake

Earthquake Seismic station
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: : Sensitivity kernels
Seismic tomography

Slower than expected

Earthquake
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Sensitivity kernels for viscoelastic deformation
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Sensitivity kernels can be calculated very cheaply by solving the adjoint equations

Al-Attar and Tromp, 2014



Sensitivity kernels for GIA (ice and ocean loading)

1000 km depth 2000 km depth

(W) [9UIdY AUSODSIA

Sensitivity of a sea level observation at Bonaparte Gulf at 13 ka to Earth’s internal viscoelastic structure.

Positive viscosity kernel: Negative viscosity kernel:
Increasing viscosity in this region Increasing viscosity in this region
will lead to an increase in local sea will lead to a decrease in local sea
level at Bonaparte Gulf at 13 ka level at Bonaparte Gulf at 13 ka

Crawford et al., 2018
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Synthetic test: setup

e 3D viscosity model based on S20RTS

e |CE-5G assumed as known

Synthetic data at sites from Lambeck et
al. (2014); same number of data
points, random times, data have no
uncertainty

Start with no 3D viscosity
perturbations and use synthetic data
to invert for viscosity structure - : 2
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normalized misfit

Synthetic test: misfit
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Relative sea level (m)

Prediction based on 200k
— = = jnitial 1D Earth model
inverted 3D Earth model
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Synthetic test: resulting viscosity
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log viscosity perturbation
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Synthetic test: resulting viscosity
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Synthetic test: correlation

Depth integrated correlation coefficient
between ‘true’ viscosity and inverted viscosity

Only in regions in which the
Everywhere viscosity has actually been
updated significantly

Crawford et al., in prep
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Towards a tomographic image of Earth’s 3D viscosity




Towards a tomographic image of Earth’s 3D viscosity




We need continued eftorts in filling data gaps (HOLSEA)

» Spatial and temporal data gaps need to be filled (early deglaciation)
e Data need to be recorded and shared in a useful way
* Present-day constraints can be incorporated (GPS, gravity)

2500

I index points
I marine limiting
[ terrestrial limiting

40
1000 L .
Oo - .'
500 | I I o~ ~
0 !!!l!l- —_ . 40°s

50
Hlm 80°8 "~
y

5 20 25 180°W 120°W 60°W  0° 60°E 120°E 180°W
)

2000

-y
[
o
o

Number of data points

25F

0 5 10
Age (kyr

Khan et al., 2019



Ice sheet reconstructions need to be improved

Laurentide ice sheet at 18 ka

Gowan et al.,, 2016 Lambeck et al., 2017 Peltier et al., 2015

Outstanding questions:

* More detailed size and evolution of all ice sheets

* “Missing ice problem” at the Last Glacial Maximum

* Contribution from different ice sheets to Meltwater Pulse 1A and other meltwater events
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Ice sheet reconstructions need to be improved

Laurentide ice sheet at 18 ka
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* Inversions can explore trade-offs between the ice reconstruction and Earth’s viscosity

* Inversions require a comprehensive dataset (sea level data, present-day uplift and gravity, pluvial and
proglacial lake shorelines, river routing, eskers, constraints from atmospheric circulation)

* Inversions require a physics based ice sheet



Data assimilation techniques need to be explored and expanded

* GIA inversions are highly non-unique

* Gradient-based optimization finds the local
misfit minimum, it does not produce a
measure of uncertainty

* Proper error propagation remains a challenge
in computationally expensive models (same
challenges in seismic tomography)

* Explore inversions and trade-offs with
different starting models

* Calculate 2nd order derivatives (Hessian) at
local misfit minimum to determine which
directions within the model space are best
constrained

We need better benchmarking in the community

3-D solid Earth deformation
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We need advances in understanding rheological properties

Can we jointly invert for 3D Earth structure (seismology, geodynamics)?
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We need advances in understanding rheological properties

Arbitrary phenomenological model Addition of dislocation creep
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What else contributes to sea level ¢

Records are starting to become
good enough to possibly detect
non-GIA sea level change, e.g.
maybe related to ocean
dynamics (requires separation
by temporal and spatial
wavelength of signal).

Meltzner et al., 2017
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Summary

We understand the general deglacial ice sheet evolution and Earth’s internal structure

Improvements in data and models are starting to allow us to map 3D variations in Earth’s viscosity,
better understand ice dynamics, and interpret signals associated with ocean dynamics

More work is needed:
* Improved data assimilation techniques (including benchmarking & physics based ice models)
* Assimilation of diverse ice and sea level related observables
* Better data coverage in space and time

* Connections to seismology, geodynamics, and mineral physics to integrate knowledge of rheological
properties

This work has implications for:
* the contribution of GIA to present-day sea level change
* the feedback between the solid Earth and ice sheets

* the amount of sea level rise during past warm periods and periods of rapid change (e.g. meltwater events),
which informs predictions of future sea level change



