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Galveston (Texas) tide gauge
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* |ts rate can be much faster than the
Global Mean Sea Level rise rate of 300! GSLR adjusted for 3.2
~3.3 mm/yr due to land subsidence. mm/yr of LLS

* Frequency of flooding is projected to E 200

double across most U.S. coastlines
with just 10-20 cm of local SLR 100+
[Vitousek et al., 2017].
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DRIVERS OF LAND SUBSIDENCE: TECTONICS

Cascades Basin and Range

1. Tectonic Uplift/Subsidence

(a) Between events
Uplift

sea level * Interseismic period: The overriding plate is squeezed
producing compressional stress and uplift.

e Earthquake: the accumulated stress is released resulting
QI in sudden horizontal motion and subsidence.

Subsidence
Sea level L

e Uplift or subsidence: Depends on location of the coastline
relative to the slip patch.

Modified from Leonard et al., (2004) Shirzaei et al. (2020, Nature Reviews)



DRIVERS OF LAND SUBSIDENCE: AQUIFER COMPACTION

Cascades

Shirzaei et al. (2020, Nature Reviews)
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2. Fluid Extraction

(a) Before pumping

This deformation is

* Governed by the effective stress, i.e., normal
stress minus pore pressure.

(b) After pumping

o e Often local scale but can be fast and
- temporally variable.
Galloway and Burbey, (2011)




DRIVERS OF LAND SUBSIDENCE: GIA Shirzaei et al. (2020, Nature Reviews)
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DRIVERS OF LAND SUBSIDENCE: SEDIMENT COMPACTION
A N D FAU I—TI N G Shirzaei et al. (2020, Nature Reviews)
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4, Sediment Compaction/
Faulting

 Compaction of loose sediments under their (@) Compaction ]
own weight can also cause coastal oeore L
subsidence.

eat s
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compaction

* The sediment compaction can continue for

decades to centuries and affects most (b) Faulting

Growth Fault

sedimentary basins.

Kooi and De Vries, (1998)




SUBSIDENCE RATE AND TIME SCALE

Shirzaei et al. (2020, Nature Reviews)
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Challenges: X, Y, Z) 2
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HOW INSAR WORKS...

1st acquisition 2nd acquisition




INTERFEROGRAM GENERATION

1st image Multiply (X) 2nd image



DIFFERENTIAL INTERFEROGRAM GENERATION

Int. DEM



Land subsidence exacerbates the hazards and risks associated with the
sea-level rise.

Several natural and anthropogenic factors drive land subsidence:
Including tectonics, aquifer, reservoir and sediment compaction, GIA and SIA.

INSAR enabled measuring the contemporary rate of subsidence at
management relevant resolution.



Required for estimating future relative SLR and flooding hazards.

In theory, these projections can be obtained by using models, calibrated
using observations of the contemporary rate of land subsidence.

In practice, this is a challenging task because the physical and
socioeconomic factors driving the subsidence are not stationary and may

vary over time.



PROJECTIONS OF LAND SUBSIDENCE: TECTONICS
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PROJECTIONS OF LAND SUBSIDENCE: AQUIFER

COMPACTION

* Challenging because of

subsidence is very
local scale but can be
both rapid and
temporally variable.

Compaction (m)

Shirzaei et al. (2020, Nature Reviews)
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* NOT challenging because GIA from
the continental deglaciations can
be considered near steady over a
century.

Lidberg et al., (2010); Sella et al., (2007)

Shirzaei et al. (2020, Nature Reviews)
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PROJECTIONS OF LAND SUBSIDENCE: SEDIMENT

COMPACTION

* Medium challenging, although
its contributions depends on
local geology, sedimentation
thickness, and accumulation rate
but often it can be considered
steady.

Kooi and De Vries, (1998)

Shirzaei et al. (2020, Nature Reviews)
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Among factors driving land subsidence, the tectonic and aquifer/reservoir
compaction processes are not steady, where as GIA is mostly monotonic.

To develop climate adaptation strategies and flood resilience plans;
Future work is needed to develop multi-objective land subsidence forecast models

These models must integrate the underlying physical processes with
socioeconomic factors and climatic forcing.

These models are calibrated using contemporary observations.



CALIFORNIA CASE STUDY

* ALOS L-band ascending 2007-
2011

* Sentinel-1A/B C-band ascending
and descending 2014-2019

* Global Navigation Satellite
System (GNSS)

Blackwell, Shirzaei et al., (2020, Science Ad)
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CALIFORNIA COAST VLM RATE

Blackwell, Shirzaei et al., (2020, Science Ad)



CALIFORNIA COAST VLM RATE
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CALIFORNIA COAST VLM RATE
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Combination of multi-track INSAR and GNSS data enables measurement
of VLM at 1000 km extent, 50 m resolution, and mm level accuracy.

The first high-resolution map of VLM in the global reference frame for the
entire coast of California was presented.

Many highly populated, low elevation coastal communities in California
are subsiding. 4.3-8.7 million people are likely to be exposed to
subsidence.

SAR data with global coverage are publicly available, and it is
technologically feasible to compute worldwide maps of coastal VLM rates
at management-relevant resolution (~10! m).



SAN FRANCISCO FUTURE INUNDATION HAZARDS

Shirzaei & Burgmann (2018, Science Ad)
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SAN FRANCISCO FUTURE INUNDATION HAZARDS
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SAN FRANCISCO FUTURE INUNDATION HAZARDS

Inundated area by year 2100 under RCP 8.5:

= Assuming only SLR an area of 168 km? will be
inundated.

" Including LLS the inundated area will increase
to 218 km?.

San Francisco
Airport

Shirzaei & Burgmann (2018, Science Ad)
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INUNDATION

- By the year 2100, Su bS'dence ‘ : il ; Subsidenceinundation293
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Miller & Shirzaei (2020, GRL, submitted)




By the year 2100, under the
worst-case composite
scenario of an 8-meter storm
surge, subsidence, and the
SLR RCP8.5, the total
inundated area is 1,156 km?.

Miller & Shirzaei (2020, GRL, submitted)
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Even without any future global sea-level rise, flooding hazards may
increase due to continued coastal land subsidence.

In San Francisco Bay, an area of 125 km? — 429 km? will be subject to
inundation and flooding by 2100 due to SLR and LS.

In Houston, an area of 186 km? — 1157 km? will be subject to
inundation and flooding by 2100 due to SLR, LS and SS.



