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Rocky coasts make up ~50% of the
world’s coastlines
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Hazards on rocky shores in a

changing climate

Wave heights
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Under what conditions do cliffs erode?

East Sussex, UK Cornwall, UK

Erosion is governed by episodic collapse events



Under what conditions do cliffs erode?

Spoiler: We

East Sussex, UK

still don’t know

Cornwall, UK




Why do we still not know!?

- Episodic cliff collapse does notalways
occur during mostintense environmental
conditions (e.g. Lim etal., 2010)

- Tensile strength of rock far exceeds
stresses of individual crashing waves and

other environmental forces (1-10 MPa vs.
|0-100 kPa)

- CIliff erosion is infrequent, rates hard to
measure

- Near-shore environments are hard to
instrumentand near shore ocean wave
transformation is not well-constrained White Cliffs of Dover, UK




Opportunity for environmental seismology

Towards establishing a link

between environmental forcing, cliff
strength, and cliff failure

Capture cliff response to environmental
conditions ata high resolution

Resolve timing and size of individual cliff
erosion events

Infer coastal erosion processes over short
timescales @ Seismometers

* 100m




First step: Disentangling environmental forces and

cliff response
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Seismic signals on rocky coasts

wind



Wind is persistent, but weak!

2 orders of
magnitude lower
than energy flux
from waves or
tides

Weak correlation
between wind
direction and
erosion (r2 ~0.4).

(c) Wl energy delivery with water elevation
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Seismic signals on rocky coasts

tides
/ 12 hours



Tides amplify wave signals

Vann Jones et al., 2013
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- Shifts wave breaking closer to cliff face, increasing
ground motion



Seismic signals on rocky coasts

wdaves
/ 0.05 - 0.1 Hz



Coherent cliff “sway” with ocean swell
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Seismic signals on rocky coasts

wave impacts
/ | — 50 Hz



Bigger waves, more shaking

Dickson and Pentney, 2012
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Bigger waves, more shaking...?

Dickson and Pentney, 2012 Thompson et al., 2019
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Seismic signals on rocky coasts

cliff failure



Event location and eroded volume estimation is
possible, but observations are rare!
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Many case studies, especially in hard rocks, don’t capture failure during
deployment



Seismic signals on rocky coasts

/ cliff flexure



Cliff flexure primes cliffs for failure?

Adams et al., 2005
: Displacement envelope

Initial time

Obs ervation: Ground motion decays 2
with distance landward eoveg
Adams (2005) Hypothesis: :E>

Repeated cliff flexure drives rock Midele time
damage, preconditioning rock for
erosion

Important note: Observation has Dmmmmmpe
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Exploring links between wave climate, cliff

shaking, and potential for rock damage

< ""’"f”‘”" ?ﬂ . .
Consistent sandstone lithology
- across sites

Ground displacement metrics
extracted every hour

Paired with near-shore buoy
data and bathymetry

n = # of seismic stations
Masteller et al., in prep



Site-s pecific sensitivity of ground motion to
wave heig ht 2e-5 Masteller et al., in prep

s at a station

Ground displacement increases
with wave magnitude in all
cases

Boulby, La | olla, and Santa Cruz
all have moderate sensitivity to
changing wave magnitude
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Sensitivity to wave height variations controlled
by wave breaking location
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Consistent patterns in ground
motion attenuation across sites

0.57

further inland

Decay in cliff shaking
amplitude agrees with
surface wave attenuation
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Enhanced attenuation on Orkney
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Enhanced attenuation on Orkney
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Implications for rock
damage development!

Increased potential for damage on
Orkney!?

We’re working on it!

- Furtheranalysis of attenuation patterns

- Active seismic study to interrogate possible
damage layer

- Ambient noise techniques to explore
temporal changes in cliff properties
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Implications for rock
damage development!

Increased potential for damage on
Orkney!?

We’re working on it!

- Furtheranalysis of attenuation patterns

- Active seismic study to interrogate possible
damage layer

- Ambient noise techniques to explore
temporal changes in cliff properties

Take home: Local uplift rates and shore

platform morphology set the sensitivity of

rocky coastlines to variable wave action
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 Progress towards:
/

|| - Separating signals related to
distinct environmental forces
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- Monitoring and locating cliff
~ failure

xﬁyr
=
S

= - Assessing influence of
potential failure mechanisms
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3} Outstanding challenges:

[ ——— - Link between environmental forcing
| Progress towards: : ;

y : : and cliff erosion rates

| - Separating signals related to Limited interrogation of influence and
" distinct environmental forces : .g : :

2 o : : evolution of cliff material properties
" - Monitoring and locating cliff . : i

s - Limited focus on identifying

: . recursors to cliff failure

a Assessing influence of i ,P v

| potential failure mechanisms %
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Outstanding challenges:
- Link between environmental forcing

G and cliff erosion rates
Progress towards: i - Limited interrogation of influence and
- Separating signals related to evolution of cliff material properties
distinct environmental forces | - Limited focus on identifying
]["Ic|>n|tor|ng and locating cliff precursors to cliff failure
il i

Operatlonal challenges and
~ limitations:
: - Small number of datasets w/ variable
; E /. ~ setups
(5. - “Noisy” environments
_Jw - Directional sources

- Assessing influence of
potential failure mechanisms
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Failure is rare, erosion hard to




