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Fig. modified from Walton & Staisch et al. (2021)
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PALEOSEISMOLOGY.

Coastal stratigraphy preserves decimeter-scale
interseismic and coseismic deformation and
tsunami inundation

Variations in the magnitude of coastal elevation
indicative of heterogeneity of paleoseismic slip

Similarly, variations in tsunami inundation
extent may be indicative of variable near-trench
rupture

Nearshore marine environments receive ample
sediment supply for the generation and
preservation of seismically triggered turbidites

Coseismic turbidites result when earthquake
shaking causes unstable, steep, submarine
canyon walls to fail, creating coarse, turbulent
sediment flows
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PALEOSEISMOLOGY

To be useful, proxies must be datable

Most paleoseismic datasets rely on radiocarbon

or optically stimulated luminescence dating

Typical age uncertainty is on the order of
several decades to a few hundred years

However, dendrochronological analysis of trees
killed by rapid coseismic subsidence and
marine inundation, can provide annual to
seasonal precision

Large age uncertainties allow for varying
interpretations of the geologic record

Multiple magnitude 8 or magnitude 7
earthquakes that occur over a short period
of time (years to decades) could be
misidentified as a single huge earthquake
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Fig. modified from Pearl & Staisch (2021)

PALEOSEISMOLOGY
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FULL MARGIN INTEGRA

1. Compile and evaluate dataset quality
Compile sedimentological characteristics of paleoseismic and
paleo-tsunami evidence along the entire margin

Quasi-quantitative ranking to assess:
» Confidence in geochronologic data
» Confidence of recorded event

2. Event correlation between sites
Systematically remodel all age data
« Browning Passage example

» Discovery Bay example

Correlation based on overlapping age data and ranking scheme

3. Estimate event timing
Combining ages between correlated sites
» Product of overlapping age probability functions
Emphasizes overlapping time periods
« Summation (mean) of age probability functions
Considers all age uncertainties
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FALSE POSITIVES

Every paleoseismic dataset suffers from
recording events that may not be Cascadia
earthquakes

* storms

» distal earthquakes

* local crustal earthquakes
» stochastic mass-wasting

In several cases, we have good examples of
non-local or non-seismic events in the record

» coastal estuaries record tsunamis from
1964 Alaska and 1960 Chile

» the San Andreas fault may trigger
southern Cascadia turbidites

We targeted known false positive events to G T RSse T

evaluate how a non-Cascadia records rank in I "~ source: Lincoln County Historical Society in Newport
our scheme 1964 debris at Ona Beach near Waldport




OXCAL MODELING

Radiocarbon ages vs. Earthquake ages

Age rank quality scheme was designed to highlight how _ o . _ _
Browning Point, single radiocarbon age below inferred 1700 CE earthquake horizon

well events might be dated at each site

. . Sequence model w/ Boundary ending @ 1950
How to model data properly to ensure uncertainty in

age information is accurately represented? Sequence model W/ Tau_Boindary ending @ 1950
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SYSTEMATIC COMPILEA

Age Rank Evidence Rank
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3 = Mutliple bracketing ages from detrital material _ L\ 20
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1 = Single detrital age —A 1.0
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SYSTEMATIC COMPILA

Age Rank

O_A 5 = Dendrochronologic age, historical
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VARIABLE INUNDATION
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FUTURE DIRECTIC

Rupture characteristics and boundaries through time

Both paleoseismic and geophysical datasets hint at variable CSZ rupture scenarios
Systematic age analysis and correlation will help constrain event extent and timing

Paleoseismic proxies for rupture characteristics provide some clues to understanding
COSeiSmic processes

Integrate earthquake paleoseismic rupture proxies with 2-D and 3-D modeling of convergent
margin at a variety of timescales

Constrain variability of great megathrust ruptures characteristics over the Holocene
Combine paleoseismic tsunami record and modeling to assess potential splay fault activity
Combine subsidence datasets to model slip heterogeneity
Combine shaking proxies to model ground motion characteristics

How does this translate to hazard?

Paleoseismic data gaps: which data gaps are most important for constraining rupture scenarios?



