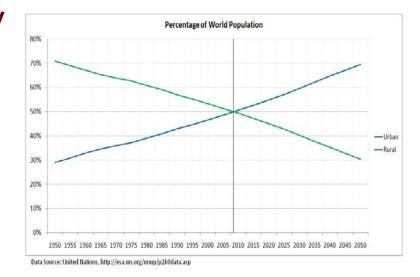
# Using GIS to Make Urban Mobility More Sustainable

Harvey J. Miller

Department of Geography & Center for Urban and Regional Analysis (CURA)
The Ohio State University

Web: u.osu.edu/miller.81
Twitter: @MobileHarv


#### Sustainable urban mobility

# Sustainable urban mobility

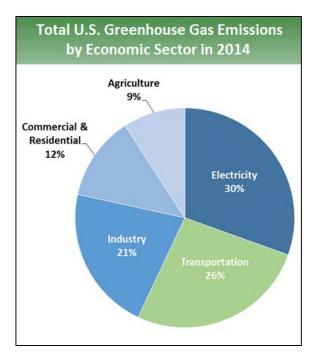
- The future of humanity is urban
- Sustainability requires sustainable urban mobility

# **Dimensions**

- 1. Economic: Cost-effective, responsive
- 2. Environmental: Minimize non-renewable resources and environment impacts
- 3. Social: Accessible, equitable, safe



2


#### Our mobility systems are not sustainable!

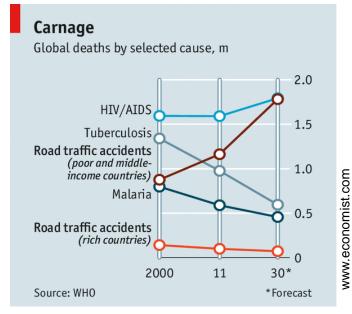
# Climate change

- US: Transportation is 2<sup>nd</sup> largest source of greenhouse gases
- Also dominant in China, India

# Energy

- Over 90% of US transportation energy is from petroleum (US Energy Information Administration)
- 60% from light-duty vehicles
- Cars are the least efficient way to move people




www.epa.gov

#### Our mobility systems are not sustainable

# Safety

- Traffic accidents are the leading cause of death for Americans aged 5-34 (Centers for Disease Control and Prevention)
- Becoming the leading cause of death overall in poor/middle-income countries (World Health Organization)

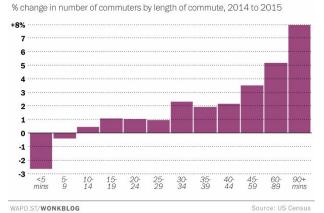




#### Our mobility systems are not sustainable

# Congestion

- USA: 7 billion extra hours 42 hours per rush-hour commuter
- In major cities, drivers have to plan 2X travel time to account for irregular delays


(Texas Transportation Institute)

# Social equity

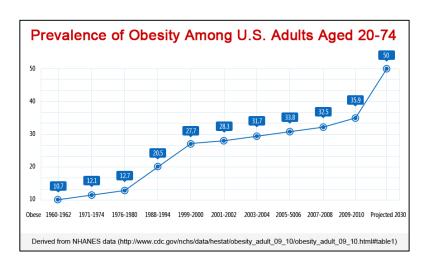
- Americans spend more on automobiles than food and health care
- Automobile monocultures creates social exclusion based on ability to pay, drive

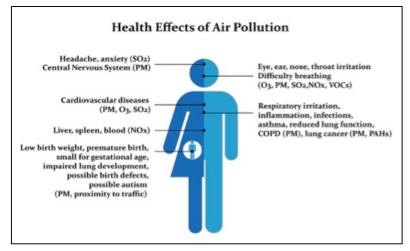
# The American commute keeps getting longer Average travel time to work, 1980 – 2015 27 minutes 26 25 24 23 20 1980 1985 1990 1995 2000 2005 2010 2015 WAPO.SI/WONKBLOG Source: US Census





washingtonpost.com


#### Our mobility systems are not sustainable


## Public health

 Physically inactive lifestyles are a major public health crisis

# Air quality

- Ground-level ozone, PM, SOx, NOx
- Wide range of bad health impacts







#### Towards sustainable urban mobility

| Conventional planning                   | Sustainable planning                    |
|-----------------------------------------|-----------------------------------------|
| Physical                                | Social                                  |
| Mobility                                | Accessibility                           |
| Traffic focus                           | People focus                            |
| Technocratic                            | Community-based                         |
| Economic                                | Multidimensional                        |
| Large scale                             | Local scale                             |
| Street as road                          | Street as space                         |
| Speed traffic up                        | Slow movement down                      |
| Time minimized                          | Time reasonable and reliable            |
| Segregate activities, people, transport | Integrate activities, people, transport |

Banister, D. (2008). The sustainable mobility paradigm. *Transport Policy*, Vol. 15, (2), pp. 73-80.

#### Towards sustainable urban mobility

# New policy needs new measures

- Our main performance measure is counting cars
- Result: we plan for cars

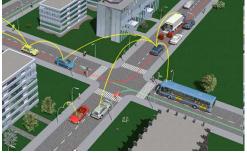
# Evidence-based policy to support sustainable mobility

- People-based measures especially social equity
- Capture externalities e.g., health, air quality

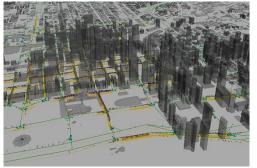







#### Towards sustainable urban mobility

# **GIS** opportunities


- Location-aware technologies
- Mobile sensors and geosensor networks
- Mobility and movement analytics
- Science and tools for exploring massive spatio-temporal data
- Tools for simulating human systems from the "bottom-up"



blogs.casa.ucl.ac.uk



rtm.science.unitn.it



avl.ncsa.illinois.edu

#### GIS for sustainable urban mobility

# Examples from my research

- Moving Across Places Study (MAPS): Public transit,
   Complete Streets and physical activity
   Barbara Brown (PI), Harvey J. Miller, Ken Smith and Carol Werner,
   National Cancer Institute, National Institutes of Health
- Green accessibility: Measuring the environmental costs of space-time prisms in sustainable transportation planning

Keith Bartholomew, Harvey J. Miller (PI) and Xuesong Zhou, National Science Foundation

#### 1. Moving Across Places Study (MAPS)

# Moving Across Places Study (MAPS)

- Impacts of Light Rail Transit and Complete Streets on physical activity
- Salt Lake City, Utah, USA

# A quasi-experiment

- Measurements of same participants before and after planned intervention
- Case (near) and control (far) groups







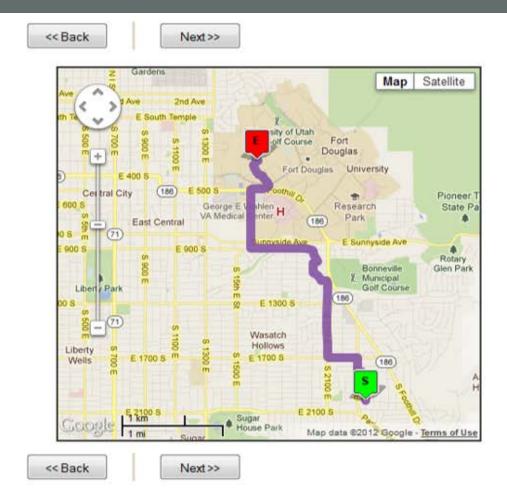
#### 1. Moving Across Places Study (MAPS)

## Data collection

- Height, weight measurements; attitudinal surveys
- GPS + accelerometer wear for one week
- 2012 (before) and 2013 (after)
- Complete sample: n = 536

# Data pre-processing (Westat)

- Uploaded, fused and map-matched
- Download for participant review
- Mode detection: Walk, bike, car, bus, LRT








#### Do you recall this activity?

- Monday, October 31
- 0 8:13 AM 8:31 AM
- Yes
- O No
- Skip activity



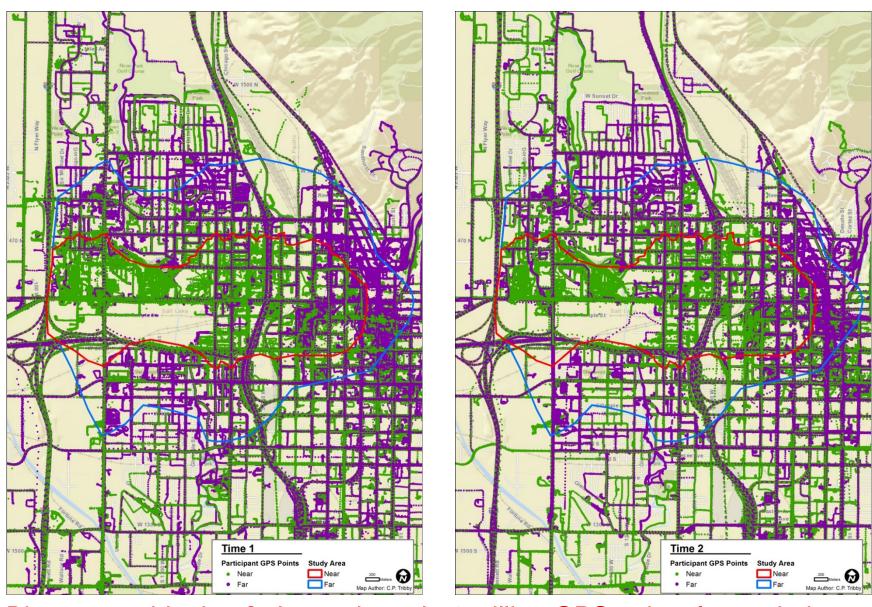
(My bike ride from home to work in Oct. 2011)

<< Back

Next>>

#### How important were the following goals to this activity?

|                               | Not at all important |   |    |   | Very<br>Important |  |
|-------------------------------|----------------------|---|----|---|-------------------|--|
|                               | 1                    | 2 | 3  | 4 | 5                 |  |
| Getting exercise              | 0                    | 0 | 0  | 6 | 0                 |  |
| Getting someplace             | 0                    | 0 | 0  | 0 | 0                 |  |
| Getting leisure or Recreation | 0                    | 0 | .0 | 0 | 0                 |  |
| 953                           | 1                    | 2 | 3  | 4 | 5                 |  |


#### Did the place where the activity occurred feel:

|                           | Not at all |   |   |   | Very |
|---------------------------|------------|---|---|---|------|
|                           | 1          | 2 | 3 | 4 | 5    |
| Safe from crime?          | 0          | 0 | 0 | 0 | 0    |
| Safe from traffic?        | 0          | 0 | 0 | 0 | 0    |
| Pleasant?                 | 0          | 0 | 0 | 0 | 0    |
| Easy to get to or around? | 0          | 0 | 0 | 0 | 0    |
|                           | 1          | 2 | 3 | 4 | 5    |

<< Back

Next>>



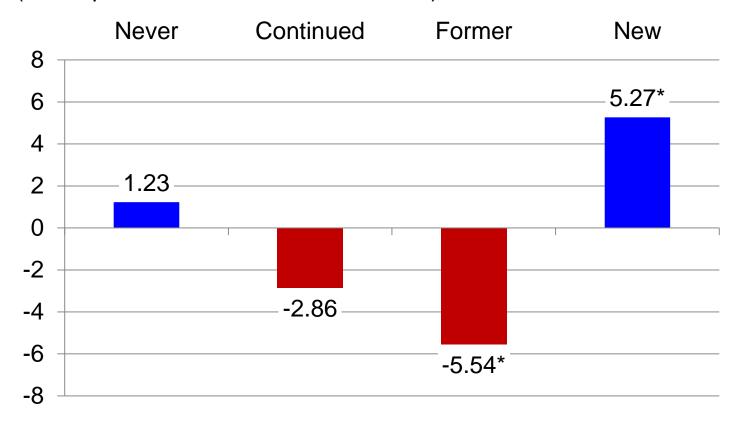


Big geographic data? Approximately 4 million GPS points for each time period!

#### 1. Moving Across Places Study (MAPS)

# Public transit user

Participant who rode either bus or LRT at least once during data collection week


# Transit groups (below)

|               |     | Public transit user in: |       |  |  |
|---------------|-----|-------------------------|-------|--|--|
| Transit group | N   | 2012?                   | 2013? |  |  |
| Never         | 391 | No                      | No    |  |  |
| Continued     | 51  | Yes                     | Yes   |  |  |
| Former        | 42  | Yes                     | No    |  |  |
| New           | 52  | No                      | Yes   |  |  |

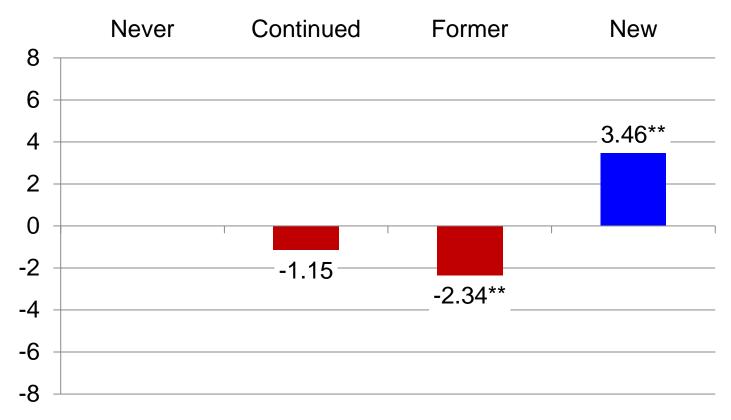


# Changes in PA-Total time by group

(within-person differences, 2013 - 2012)



Average time: Minutes per 10 hr. wear period


PA: Min 1000 cpm in min 5 minute bout

Within group differences: p < 0.1



# Changes in PA-Transit time by group

(within-person differences, 2013 - 2012)



Average time: Minutes per 10 hr. wear period

PA: Min 1000 cpm in min 5 minute bout Within group differences: \*\* p < 0.05

# Changes in PA-Other time by group

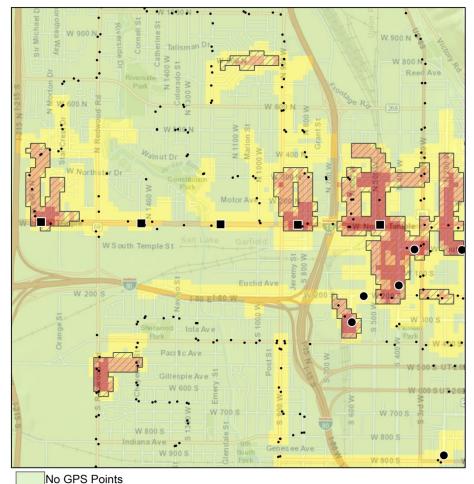
(within-person differences, 2013 - 2012)



Average time (minutes per 10 hr. wear period);

PA: Min 1000 cpm in min 5 minute bout Within group differences: None significant

# Summary


| User behavior<br>(2013 vs. 2012)   | PA-Total  | PA-Transit | PA-Other  |
|------------------------------------|-----------|------------|-----------|
| Did not change (Never; Continuing) | No change | No change  | No change |
| Stopped using transit (Former)     | Decrease  | Decrease   | No change |
| Started using transit (New)        | Increase  | Increase   | No change |

No confounding factors

No substitution for non-transit PA

→ LRT generated new PA

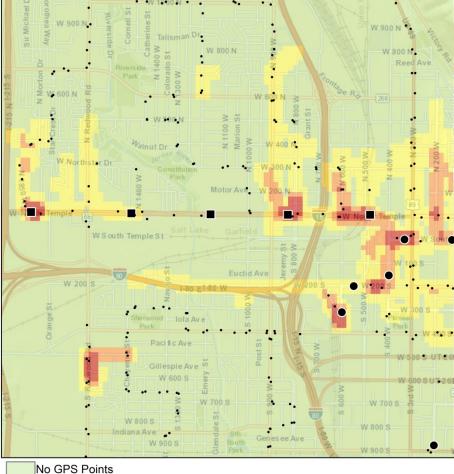




2012 Transit-related **Physical Activity** 

- 2012 Bus Stops
- 2013 Bus Stops
- **New TRAX Stations**
- Existing TRAX Stations

Medium Density High Density Local Moran's I


Low Density

Density Clusters

2013 Transit-related **Physical Activity** 

Basemap: Esri; Transit stops: AGRC.





2012 Transit-related **Physical Activity CONTINUED** 

2012 Bus Stops

2013 Bus Stops

New TRAX Stations

Medium Density Existing TRAX Stations High Density

Low Density

2013 Transit-related **Physical Activity CONTINUED** 

Basemap: Esri; Transit stops: AGRC. Kilometers



2012 Transit-related Physical Activity FORMER 2012 Bus Stops2013 Bus StopsNew TRAX Stations

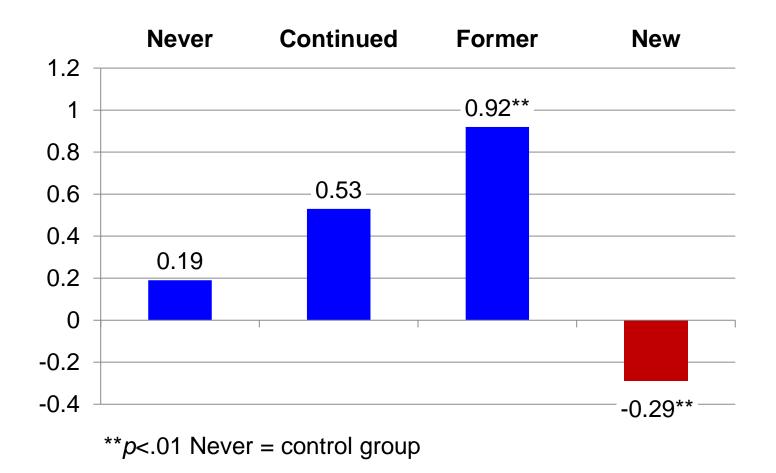
New TRAX StationsExisting TRAX Stations

No GPS Points
Low Density
Medium Density
High Density

2013 Transit-related Physical Activity NEW W 900 N

W 800 N

W 600 S UT-26


W 700 S

W 800 S

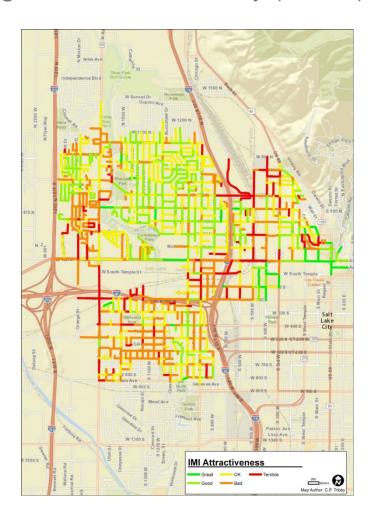
W 900 S

Basemap: Esri; Transit stops: AGRC.

### BMI changes by transit ridership (difference 2013 - 2012)



#### 1. Moving Across Places Study (MAPS)


# Walkability audit

Irvine Minnesota Inventory (IMI) 160 attributes / 6 dimensions

- Accessibility
- Attractiveness
- Traffic safety
- Crime safety
- Density
- Pedestrian access

# Block-level survey by research assistants

1000+ block faces in the neighborhood 2012 and 2013 Inter-rater reliability good



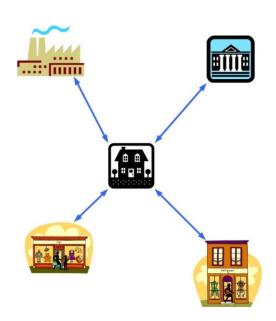
#### 1. Moving Across Places Study (MAPS)

# Published results (selected)

- 2015. Transit use, physical activity, and body mass index changes: Objective measures associated with Complete Street light rail construction.
  American Journal of Public Health, 105, 1468-1474.
- **2015.** Public transit generates new physical activity: Evidence from individual GPS and accelerometer data before and after light rail construction in a neighborhood of Salt Lake City, Utah, USA. **Health and Place**, 26, 8 17.
- **2016.** Assessing built environment walkability using activity space summary measures. **Journal of Transport and Land Use**, 9, 1-21.
- 2016. A complete street intervention for walking to transit, non-transit walking, and bicycling: A quasi-experimental demonstration of increased use.
  Journal of Physical Activity & Health. doi: 10.1123/jpah.2016-0066.
- 2016. Analyzing walking route choice through built environments using random forests and discrete choice techniques. Environment and Planning B: Planning and Design. doi: 10.1177/0265813516659286



# Accessibility


- Beyond mobility
- Ability to participate in activities

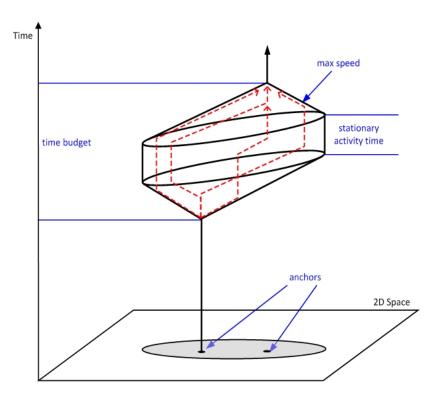
Employment, education, health care, shopping, recreation, socializing ...

# Fundamental to cities & transportation

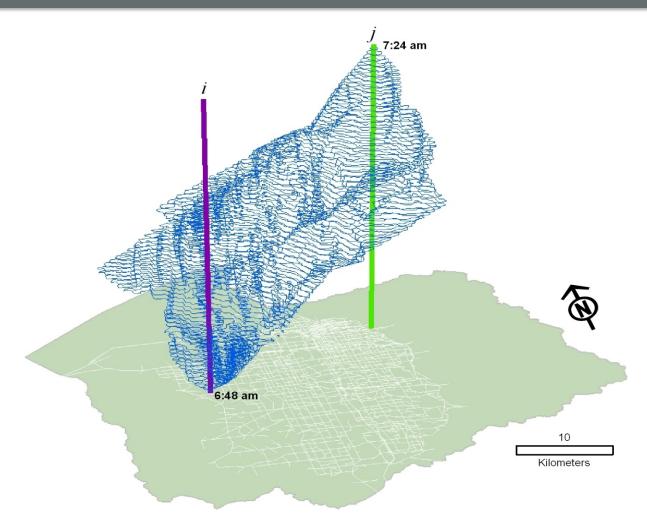
A valuable measure in sustainable mobility planning

#### 2. Green accessibility

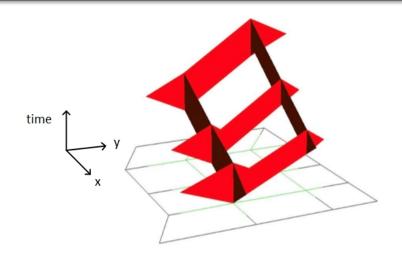



Classic accessibility
measure: Count the
number of activities near
home (or work)

# Space-time prisms


Envelope of all possible space-time paths between two locations and times given maximum speed and any stationary time

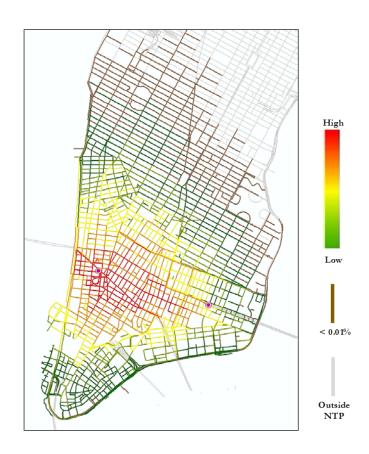
A socially sensitive measure of accessibility


Considers both location and time constraints



A space time prism (STP) in continuous space




A more realistic space-time prism: Travel from western to eastern Salt Lake City with a 35 minute time budget



# Network-time prisms (NTP): Space-time prism within transportation network

- Above: Small example in space-time
- Right: NTP spatial footprint with visit probabilities for a vehicle 5 minutes after leaving Holland Tunnel in Manhattan

#### 2. Green accessibility



# NTPs and sustainable mobility Evaluation measure

- Plans, policies, investments
- What are the accessibility impacts on diverse social groups?

# A bigger prism is good!

More accessibility to opportunities

## But, a bigger prism is also bad!

 Higher environmental costs (e.g., energy consumption, emissions)

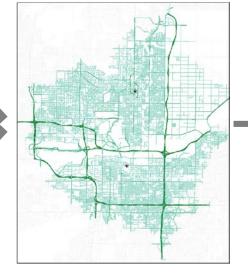


www.theatlanticcities.com

# Research objective

Estimate and validate environmental costs of a NTP

- A single space-time path (e.g., GPS trajectory) is easy
- NTP: Many paths, only one realized


Application: Emissions in Phoenix, AZ

- Model expected locations and speeds within NTP
- Estimate expected emissions (MOVESLite)
- Validate using primary data from instrumented vehicles

# NTP model: Continuous-time semi-Markov process

# where? edge visit probabilities

# How fast? edge speed profiles



# Energy consumption and emission model

Vehicle specifics (vehicle model; engine type; etc.)

# MOVESLite Energy and emission simulator

# Outputs:

- Expected energy & emissions for entire prism;
- 2) Spatial distribution over time



**Experimental prism: Origin:** ASU Tempe campus. **Destination:** Scottsdale Fashion Square Mall. **Time budget:** 25 min. **Maximum speed:** Varies by network arc

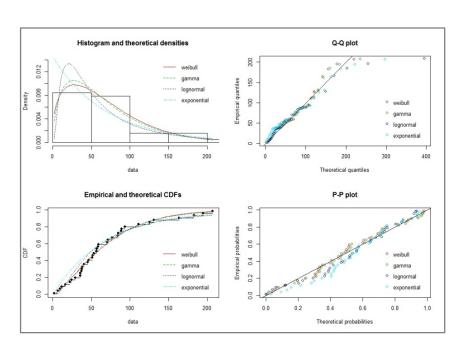
# Primary Data Collection for model validation

#### **Route Design**

40 trips along 5 designated routes within 25

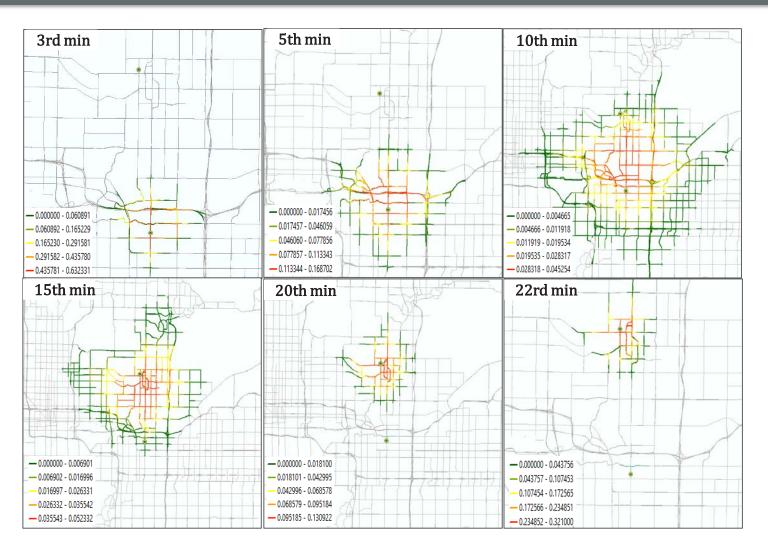


#### **Data Collection**


Second-by-second (location, speed, engine performance) via GPS-enabled **Onboard Diagnostic** (OBD) devices



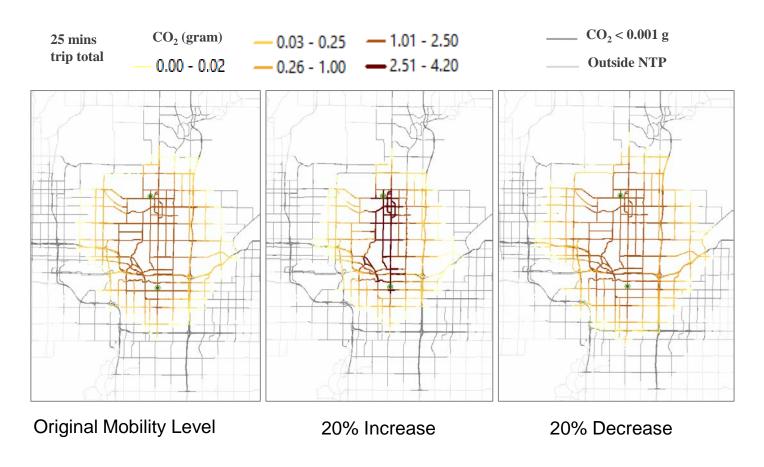
Detailed instructions to research assistants




#### Results



Calibrated mobility level: lognormal distribution


Expected CO<sub>2</sub> emissions: Simulated vs measured CO<sub>2</sub> for all edges (g/s)



Expected CO<sub>2</sub> emissions over time within the NTP (g/s)

|                              | Potential Network Path Area (km) |                               |                              | CO <sub>2</sub> Emissions (g) |                             |                              |
|------------------------------|----------------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------|------------------------------|
| Direction                    | Baseline                         | max speed<br>+5 MPH           | max speed<br>- 5 MPH         | Baseline                      | max speed<br>+5 MPH         | max speed<br>-5 MPH          |
| ASU to<br>Scottsdale<br>Mall | 1782.48                          | 2291.75<br>(+ <b>28.6</b> %)  | 1440.30<br>(- <b>19.2</b> %) | 6048.42                       | 6231.88<br>(+ <b>3.0</b> %) | 5391.32<br>(- <b>10.9</b> %) |
| Scottsdale<br>Mall to ASU    | 1800.92                          | 2315.29<br>(+ <b>28.6 %</b> ) | 1466.61<br>(- <b>10.9</b> %) | 6045.53                       | 6231.23<br>(+ <b>3.1</b> %) | 5398.66<br>(- <b>10.7</b> %) |

Scenario 1: changes in speed limits



Scenario 2: changes in mobility levels

# Published results (so far)

- **2014**. Simulating visit probability distributions within planar space-time prisms. **International Journal of Geographical Information Science**, 28, 104-125.
- **2015**. Transportation network design for maximizing space-time accessibility. **Transportation Research B**, 81, 555-576.
- **2016**. Modeling visit probabilities within network time prisms using Markov techniques. **Geographical Analysis**, 48, 18-42.
- **2016**. Estimating the most likely space-time paths, dwell times and path uncertainties from vehicle trajectory data: A time geographic method. **Transportation Research C**, 66, 176-194.

Links to papers: u.osu.edu/miller.81/research/

## Conclusion

- We cannot have sustainability without sustainable urban transportation
- Our current transportation systems are unsustainable
- We need (among other things):
  - 1. Evidence that shows the health benefits of active transportation, including public transport
  - Methods to estimate social + environmental externalities of mobility

#### To the future!

# Human systems are complex

- Policy and planning interventions have unintended consequences
- Fostering sustainable mobility is a good example

# Geographic data collection is much easier

- Allows researchers to design and execute real-world experiments, with stronger support for causality
- Opportunities for natural/quasi experiments are happening all the time!

# Next step: Geographic information observatories

 Persistent observation of geographic data to support opportunistic observation, experimentation and shared decision-making

# Thank you!

#### Contact

Email: miller.81@osu.edu

Web: u.osu.edu/miller.81

Twitter: @MobileHarv

# Support

- Complete the streets 3 ways: Effects on Activity and BMI (1R01CA157509-01),
   Obesity Policy Research: Evaluation and Measures, National Institutes of Health.
- Green accessibility: Measuring the environmental costs of space-time prisms in sustainable transportation planning" (BCS-1224102), Geography and Spatial Sciences and Environmental Sustainability programs, National Science Foundation.

## **Students**

- Calvin Tribby, PhD. Now: Cancer Prevention Fellow, NCI, NIH
- Ying Song, PhD. Now: Assistant Professor, University of Minnesota