STRATEGIES FOR SUSTAINABLE WATER MANAGEMENT FOR ABANDONED MINES

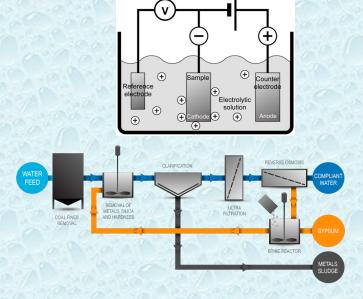
Recovery from Low Metal Water

Linda Figueroa, Ph.D., P.E., BCEE, F. ASCE Colorado School of Mines

Opportunities with inactive and abandoned hard-rock mine lands

April 10, 2017

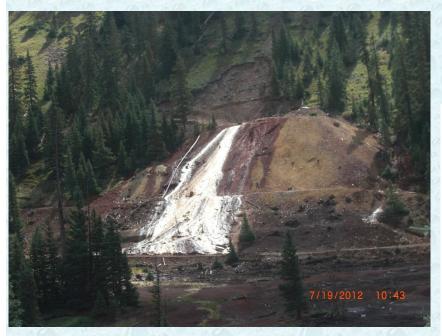
CONTENT


Opportunity

Options

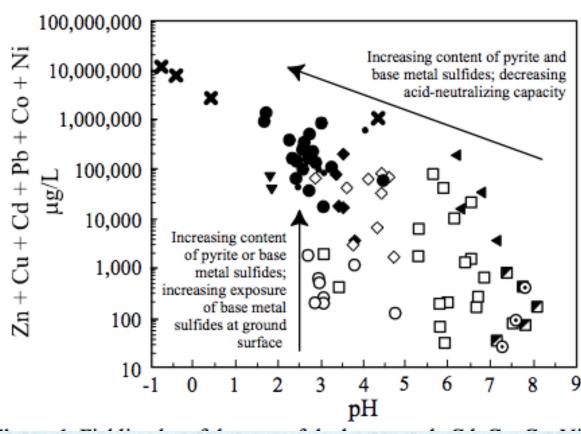
Applications

Future

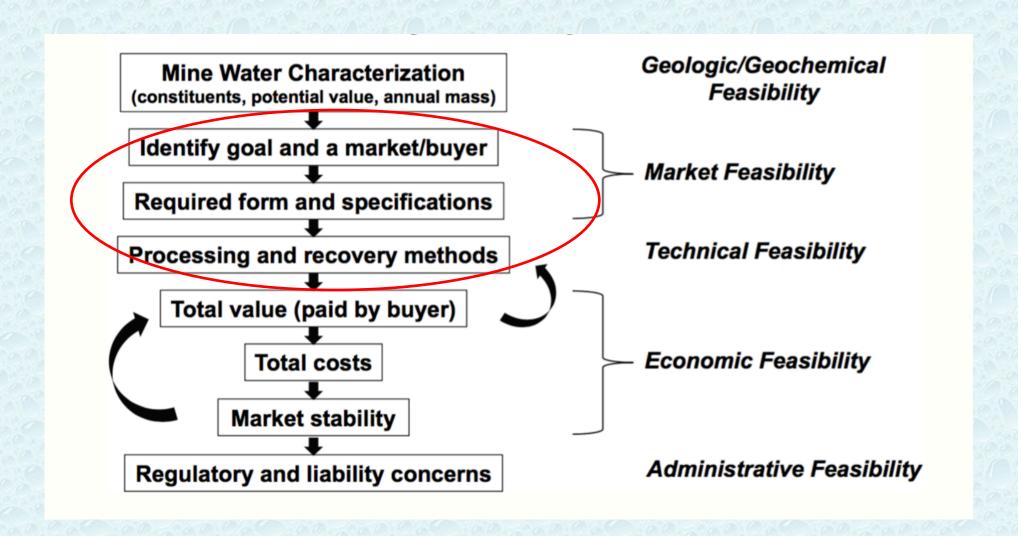

CLARIFICATIONS

Orphaned or abandoned mines are those mines for which the owner cannot be found or for which the owner is financially unable to carry out clean-up.

Inactive mines may be currently not operational but still have financially capable owners

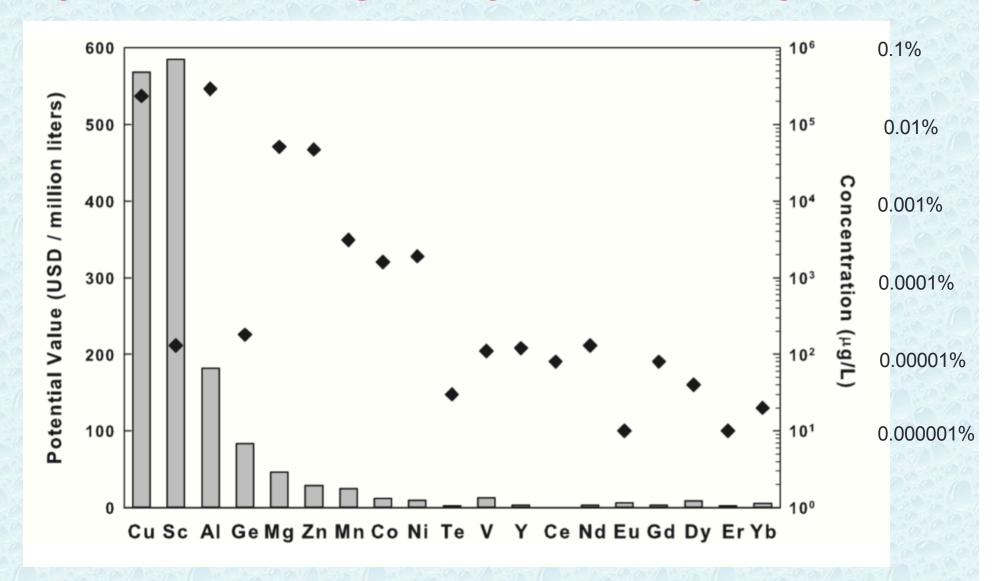

Orphaned or abandoned mines should be the drivers for the path forward

MIW CONTAINS METAL VALUE



MIW = Mining Influenced Water

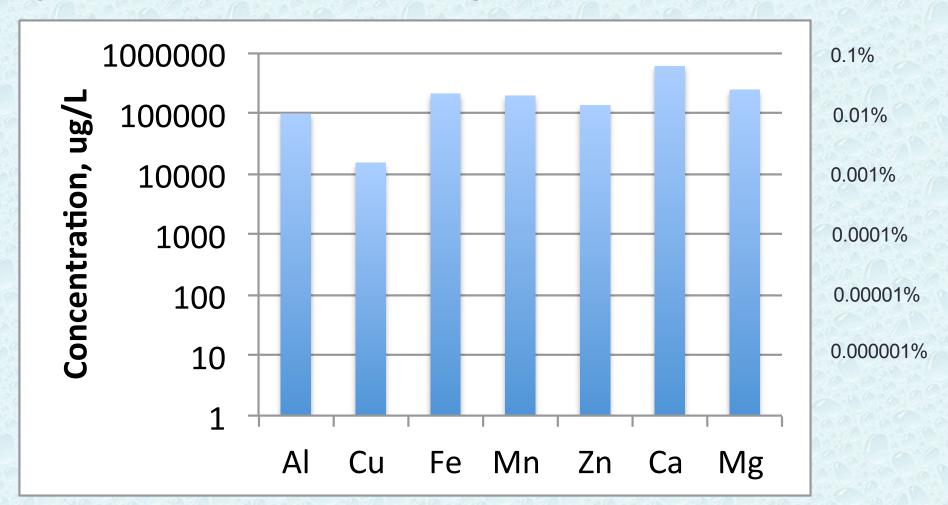
Seal and Foley 2002


METAL RECOVERY FEASIBILITY CONSIDERATIONS

SUMMITVILLE MINE AND VICINITY

POTENTIAL VALUE FROM REYNOLDS ADIT

ARGO TUNNEL

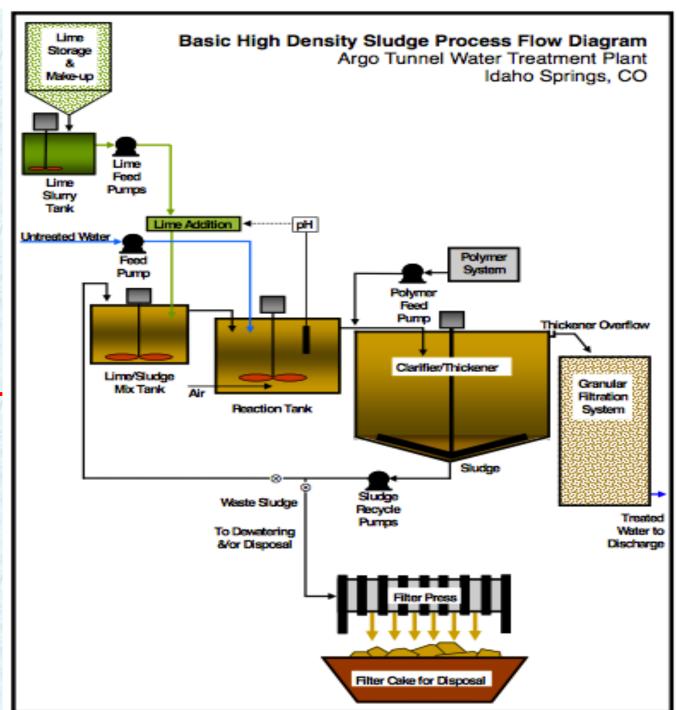


Conventional Treatment Example

ARGO TUNNEL WATER TREATMENT PLANT

250 gpm (1.4 ML/d) average flow in 2009

Major constituents in the Argo Tunnel MIW



ARGO TUNNEL SELECTED LIMITS

Discharge limitations

Parameter	30 Day Average	
Cadmium	3 µg/L	Other regulated metals
Copper	17 μg/L	Aluminum Arsenic
Iron	15.8 mg/L	Lead
Zinc	225 µg/L	Manganese Silver
TSS	20 mg/L	

ARGO
TUNNEL
WATER
TREATMENT
PLANT
SCHEMATIC

ARGO TUNNEL WTP OPERATION COSTS

Year	2005-06	2006-07	2007-08	2008-09
Annual Cost	\$904,210	\$996,957	\$852,445	\$1,122,741
Change/Task Order	4%	2%	0%	10%
Chemicals	15%	10%	10%	10%
Lab/Admin/Clean	0%	1%	1%	0%
Maintenance/Repar	10%	10%	9%	10%
Monitoring	3%	2%	2%	2%
Routine Operation Labor	53%	57%	56%	51%
Sludge Disposal	14%	17%	22%	16%
Transition	0%	0%	0%	0%
Water Bill	1%	1%	0%	1%
Annual Disposal Cost	\$126,589	\$169,483	\$187,538	\$179,639

\$8.5/1000 gallons

NO METAL VALUE FROM LIME PRECIPITATION

Sludge Composition (approx.)

Metal	% of dry weight
Iron	50
Manganese	30
Aluminum	10
Zinc	10
Copper	1

Sludge contains 80% water!

METAL REMOVAL # METAL RECOVERY

METAL RECOVERY OPTIONS FROM MIW

Selective Processes

Precipitation

Ion Exchange

Sorption

Electrochemical

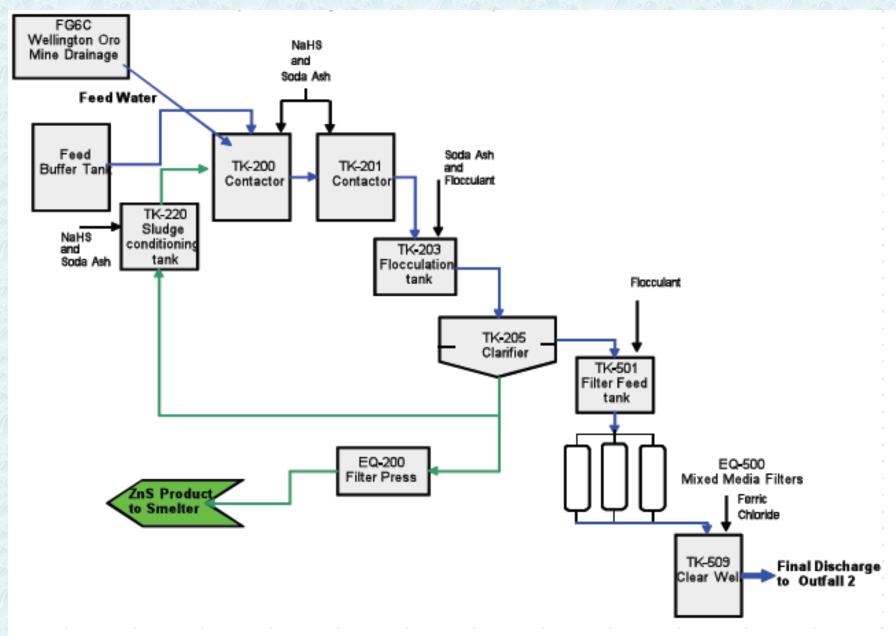
WELLINGTON ORO METAL RECOVERY WTP

WELLINGTON ORO WTP

Flow rate 100 gpm in 2009

Target constituents in the Wellington Oro MIW

ug/L	<u>%</u>
200,000	0.02
< 100	<0.00001
NR	
NR	NR = not reported
	200,000 < 100 NR NR NR NR NR


WELLINGTON ORO SELECTED LIMITS

Discharge limitations

Parameter	30 Day Average
Cadmium	4 μg/L
Zinc	225 μg/L
TSS	20 mg/L

Unregulated metals
Aluminum
Copper
Iron
Lead
Manganese

WELLINGTON ORO PROCESS FLOW SCHEMATIC

WELLINGTON ORO SLUDGE

Smelter requirements

50% zinc minimum

Containing low levels or no:

Iron

Nickel

Thallium

Sludge Composition

Element	Percent
Water	18%
Zn	57%
S	38%
Trace	5%

Nyrstar Zinc Smelter – Clarksville, Tennessee
The only primary zinc smelter in the US currently
has a working agreement with the Wellington Oro
Operation

WELLINGTON ORO WTP OPERATION COSTS

	4
Chemical Reagents (Soda Ash)	\$40000
Chemical Reagents (Sodium Hydrosulfide)	\$20000
Chemical (Other)	\$3000
Testing of effluent (outside agency)	\$15000
Shipping (to testing agency)	\$2400
Gas (heating)	\$9900
Electric (plant power)	\$15000
Sewer (office only)	\$1500
Phone / internet	\$1800
Plant Equipment Maintenance	\$19800
Supplies and operations materials	\$5000
BioteQ (consultant off-site monitoring)	\$30000
Zinc revenues (2009)	- \$18,900
Net expenses (2009)	\$144,500
- /	

\$4.0/1000 gallons

OTHER ZINC CHEMICAL FORMS

The MARKET dictates usable forms of zinc and chemical constraints.

Selected zinc fertilizer forms

Zinc source	Water solubility	Soil type
ZnSO ₄ -7H ₂ O	high	all
ZnSO ₄ -H ₂ O	high	all
xZnSO ₄ -xZnO	variable*	variable*
ZnO	low	acidic

^{*} depends on relative proportion of ZnSO₄ and ZnO

POTENTIAL ZINC FORMS FROM PRECIPITATION

Form processing needed

Zinc carbonate

ZnCO3

drying

Zinc hydroxide

roast (100-250°C)

 $Zn(OH)_2 \rightarrow ZnO + H_2O$

Zinc sulfide

roast (700-1000°C)

 $ZnS + 1.5O_2 \rightarrow ZnO + SO_2$

ZnCO₃ and ZnO are feedstock for ZnSO₄ manufacture

COMPARISON OF METAL RECOVERY OPPORTUNITY

ARGO TUNNEL Constituent mg/L		NELSON TUNN	NEL
		Constituent m	g/L
Calcium	600	Calcium	250
Magnesium	240	Magnesium	30
Aluminum	100	Aluminum	1.5
Copper	15	Copper	0.2
Iron	210	Iron	0.2
Manganese	190	Manganese	15
Zinc	130	Zinc	80
Cadmium	0.13	Cadmium	0.5
Lead	0.03	Lead	1.0

Lower co-contaminant potential desirable

CONTAMINANTS RELATED TO ZINC MASS

Nelson Tunnel MIW

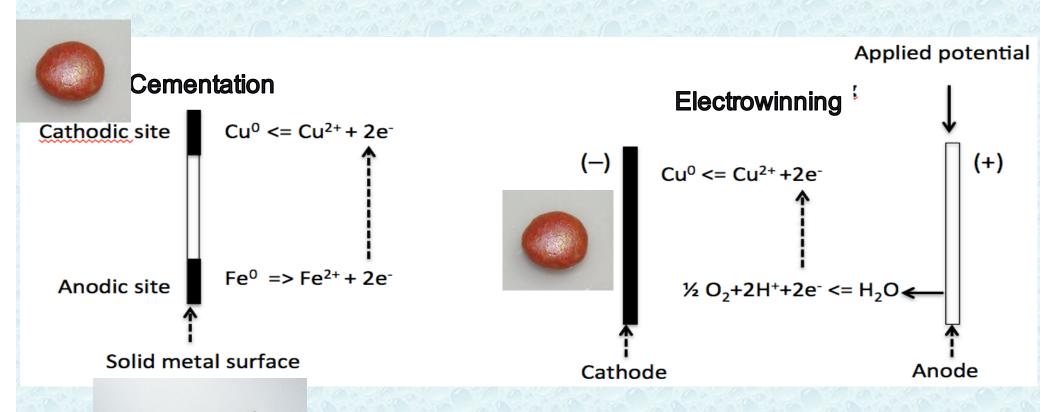
Constituent	Metal/Zn precipitate*	Metal/Zn limit	
Cadmium	6.25 mg Cd/g Zn	≤ 0.14 mg Cd/g Zn	
Lead	12.5 mg Pb/g Zn	≤ 0.28 mg Pb/g Zn	

Cd and Pb exceed fertilizer limits and reduce value of zinc product

^{*}assumed Cd and Pb 100% remove with Zn

MULTI-MICRONUTRIENT FERTILIZER OPTION

Multi-micronutrient slow release fertilizer of Fe, Mn, Cu and Zn

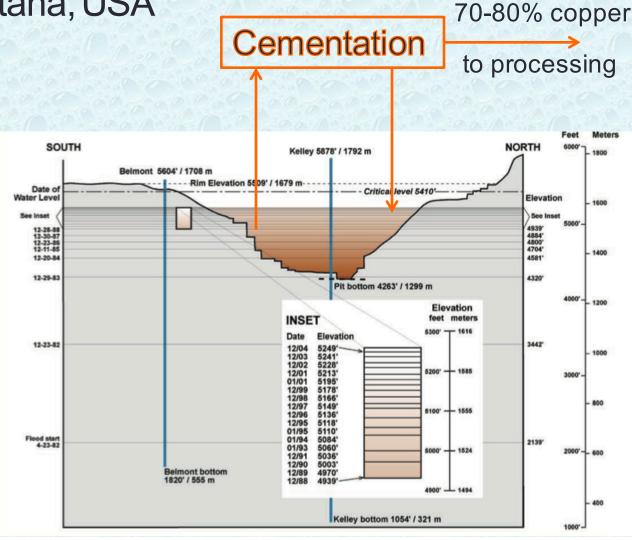

Micronutrient utilization examples in mg metal/g Zn

Crop	Fe/Zn	Mn/Zn	Cu/Zn
Rice	3500	2000	100
Potato	4500	400	400

Metal update rates g/hectare

Crop	Zn	Fe	Mn	Cu
Rice	70	250	140	20
Potato	430	1970	150	160

ELECTRODEPOSITION



MIW ELECTRODEPOSITION SUCCESS

Only one full-scale site identified world-wide

Berkeley Pit, Montana, USA

TECHNICAL APPLICATION CHALLENGES

- Low value metal concentration
- High concentrations of interfering metals
 - Argo Tunnel MIW

Metal	mg/L
Iron	120
Manganese	90
Aluminum	20
Zinc	40
Copper	4

- Residual metal exceeds regulatory limits
 - Berkeley pit cementation

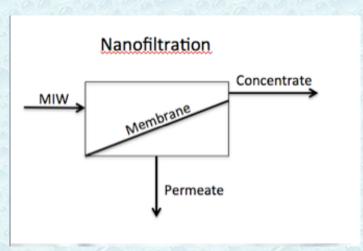
$$Cu_{in} \approx 200 \text{ mg/L} => Cu_{out} \approx 20 \text{ mg/L}$$

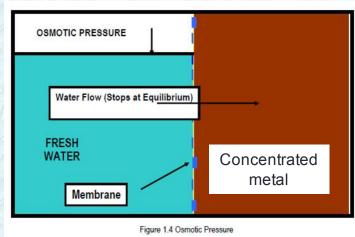
TECHNICAL STRATEGIES

Problem: Low value metal concentration

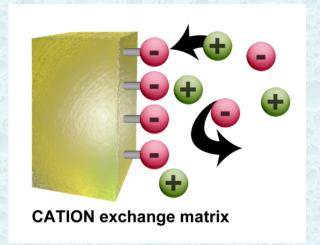
Solution: Concentrate MIW

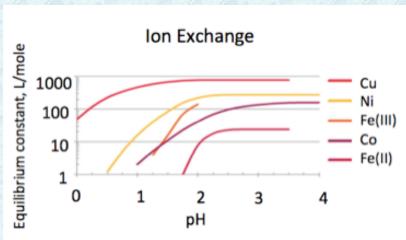
Problem: High concentrations of interfering metals


Solution: Pre-treatment to remove interference


Problem: Residual metal exceeds regulatory limits

Solution: Post-treatment to removal residual


ENABLING PROCESSES


Membrane option

Selective recovery option

FUTURE

- MIW is a potential source of metal resources
- New treatment methods and strategies are needed to recover metal value
- New policies are need to incentivize purchase of feedstock materials produced
- New policies are needed to facilitate partnerships

Public sector

Common interest

Private sector

THANK YOU FOR YOUR ATTENTION

