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This study was prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United

States Government or any agency thereof.
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Confluence of data, computational
capability and machine learning
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Real-Time Visualization Real-Time Forecasting

“MRI” for the Subsurface “Advanced Control Room”

Empirical Models
(machine learning;
other reduced-order models)

Rapid Data to Knowledge

Rapid
Data to
Knowledge

Autonomous Monitoring

Science

Data _ Based
Sensors Traditional Pmd('tﬁg':n
Monitoring & nheory,
Forecasting experiment,

simulation/HPC)
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e * Dates: July 17-18, 2018
| * Attendees: 70
AL O o ‘  DOE and National Labs: ~45%

e Academics: ~33%
* Industry: ~22%

 Technical Areas:
e Unconventional QOil and Gas
e Carbon Storage
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Recommendations:

* Engage both data scientists and subject
matter experts (SMEs)

* Utilize an outcomes-based approach
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Recommendations:

* Engage both data scientists and subject
matter experts (SMEs)

 Utilize an outcomes-based approach
* Access to large datasets is critically important
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Recommendations:
. . . * Priorities SUBJECT
* Engage both data scientists and subject MEER

Integrate:
* Fundamental

matter experts (SMEs)

shale studies

* Utilize an outcomes-based approach e
: ::::oaches SCIENTISTS

e Access to large datasets is critically important

e Supplement field data with
physics-based simulation

Field Data
Data Analytics Possible

Refiied- Outcomes

Order

Laboratory Data Models

Optimize resource
Statistical . .
Approaches Early warning
system

Machine e Reduce water
Learning

Simulation Data

Data Management

Synthetic Data
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Peace River 3 Geological Model, Version 2 AGS 3D Geololgjg‘i!‘Framework Models g::;,g ?::la:‘ac::llieglon D

* Engage both data scientists and subject
matter experts (SMEs) A

Dina-Lloyd 3D
Geological Model

3D Model of Upper

West Central Alberta 3D Cretaceous Coal Zones

Geological Model

 Utilize an outcomes-based approach

* Access to large datasets is critically important N\

Dinosaur Provincial Park
3D Geological Model

e Supplement field data with
physics-based simulation

Sylvan Lake 3D Calgary-Lethbridge Corridor
Hydrostratigraphic Model 3D Geological Model

* New data management tools

a nd a ppro aChes Wi " be need ed Geologic Framework Models underlying Alberta,
Canada (EOS and AGS)
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Altered fluid-shale Pyrite oxidation X-ray microscopy

interface Oxidizing pyrite Pore In-filling
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Deep Convolutional Neural Network (hidden)

Fundamental
Shale Studies \
collaborations
DOE Labs
Field ) ~ Data-Driven
Laboratories i Approaches
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Data driven approaches provide options
for unconventional resources
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Western Marcellus Predictive Model _Actual vs. Estimated Well Production

Perf Length
Location

Additive
GRr TOC

Ro NF density
12m GOR |njection rate
Thickness Frc type

Production [MMCFGE]
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Parameter Omitted

PrOplfﬁ?; Microbe family
Azimuth

TVD
Pad Dirill

[
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Production [MMCFGE]

Impact to the accuracy comparing to
baseline (all parameters included)
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Proxy models allow rapid simulations to probe  [N=]ranona
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geologic uncertainty TL)R50R10RY

57000 652000 650200 658100 650500
Previous Contact Set on Top Waarre C Depth Surface

Utilizes data mining and neural networks to predict reservoir behavior
* Pressures
e Saturations

Can be trained with a relatively small number of reservoir simulations

Allows for spatial heterogeneity and operational variability

Shrinks time for reservoir simulation from days and hours to minutes
and seconds

2700

2750

psi psi
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Bauer et al., 2019 Rose et al., in press g Mmississieel ALABAMA
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Predicting likelihood

Explore & Transform e - of encountering fluid
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Forecasting induced
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“Smart” discovery Oklahoma

of global oil & gas
infrastructure
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* Collecting disparate datasets and ML/BD solutions, tools and capabilities devised & implemented to
contextual information streamline and automate data collection, movement, and transformation
* Curating FE R&D data products W v
f qih 9
* Transforming & labeling data across B, F
various scales and formats ; S Y
e Spanning surface & subsurface systems
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Thank You!

VISIT US AT:

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologylLaboratory

CONTACT:
Grant Bromhal Kelly Rose
bromhal@net|.doe.qov kelly.rose@netl.doe.qov
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Traditional Approaches to the
Subsurface are Robust, but Slow

Empirical Models

For example:

* History matching of production/injection
data to derive reservoir properties

* Forward modeling of a history-matched
site model to forecast reservoir behavior

* Inversion of seismic data to refine a site-
specific velocity model

(machine learning;
other reduced-order models)

Speed

Science

Based
Prediction
(theory,

experiment,
simulation/HPC)

Traditional Approach
Time & Labor Intensive

Data
Sensors




Confluence of data, computational
~capability and machine learning
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Real-Time Visualization Real-Time Forecasting
“MRI” for the Subsurface “Advanced Control Room”

Empirical Models
(machine learning;
other reduced-order models)

Rapid Data to Knowledge

Rapid
Data to
Knowledge

Autonomous Monitoring

Science

Data Based
Sensors Traditional Pmd('tﬁte':n
Monitoring & nheory,
Forecasting experiment,

simulation/HPC)

y U.S. DEPARTMENT OF
b

Rapid Prediction

Virtual Learning




N NATIONAL

Capabilities for Securely Maintaining Data  [TL)&scrRmcw

EDXis NETLs
Data Driven Tool for
Science-Based Decision Making

* Maintain confidentiality of all data
coming from industry partners

* Only use work product for sharing
outside of group

* Enable access to computational
resources for partners

NETL assembling HPC for
madchine learning applications
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Real-Time Decision Making for the Subsurface

Workshop

Hosted by:
Carnegie Mellon University

Wilton E.Scott Institute
for Energy Innovation

* Dates: July 17-18, 2018

* Attendees: 70
* DOE and National Labs: ~45%
* Academics: ~33%
* Industry: ~22%

e Technical areas:
e Unconventional Oil and Gas
* Carbon Storage
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Breakout Topic Areas in Relevant Use Cases
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)n optimization
operations
osteering

REAL-TIME DECISION-MAKING
FOR THE SUBSURFACE REPORT

itoring

ia-onds to hours)

at the well (hours to days)

" management (days to months)

Seismicity and dynamic stress state
* Prevent damaging seismicity
* Improve characterization and monitoring
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Geology in 3-D and the Evolving Future of Earth Science:

Developing a Virtual Subsurface Data Framework for FE R&D

Employing “smart” ’ ) i EOS Earth & Space Science News
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Dina-Lloyd 3D
Geological Model
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Coming soon via
EDX/Geocube
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subsurface modeling
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“Smart” discovery
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ML/BD solutions, tools and capabilities can be devised or implemented to
Collect disparate streamline and automate data collection, movement, and transformation
datasets and contextual |

information
Incorporate data across
various scales and

formats

Span surface-subsurface

Not all data is equal, not
all data are easy...but
there is more out
there...put it to work!
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