Machine learning with subsurface datasets—current state of the science and practice

Paul Johnson

CONTENTS

- Brief introduction and background to machine learning
- Supervised learning applied to laboratory fault physics
- Cascadia
- Perspective: path to future

TECHNOLOGICAL SHIFTS LEADING TO REVOLUTIONARY ADVANCES IN SOLID EARTH GEOSCIENCE

1900-1950s	Radiometric dating	age of Earth
1930's	Magentometer	pole reversals
1950s	Nuclear testing	basis of modern seismology
1960's +	Spacecraft/satellite	origin of KT extinction, GPS, Earth imagery
WWII	Oceanic research vessels	Discovery of magnetic stripes in oceanic basalt-proof of plate tectonics (in the 1960's)
1980's+	Widely available computers	massive advances in imaging, simulating Earth processes, data processing)
1980's	Invention of the WWW	revolutionary access to information and data
1990's	Energy technology advances	e.g., horizontal drilling
1980'+	Superfast Computers	dramatic advances in waveform inversion, large scale simulation etc.)
2010's	GPS, InSAR	dramatic advances in measuring Earth surface displacement
present	Gaming and GPUs	dramatic advances in waveform inversion, large scale simulation etc.)

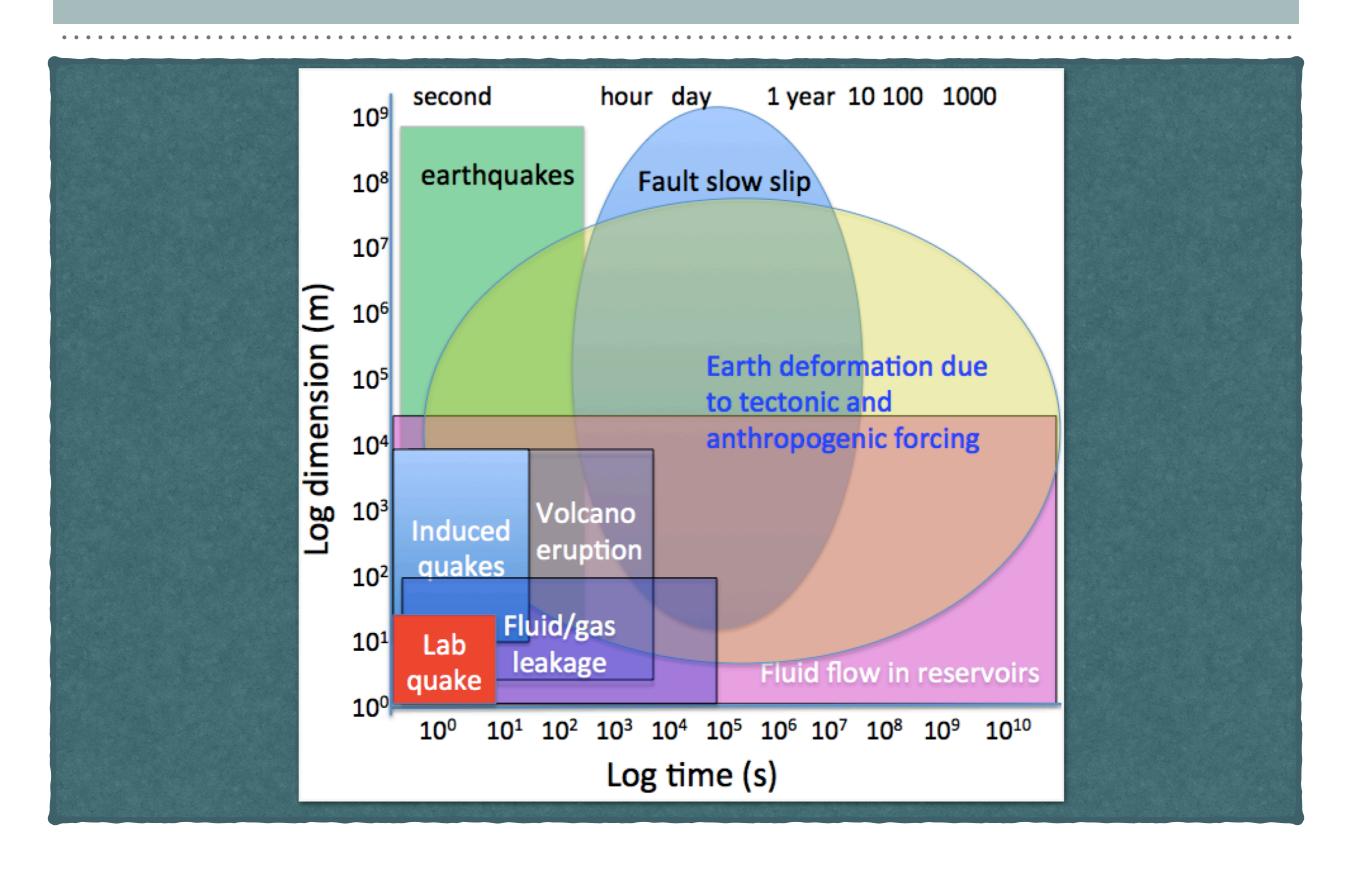
TECHNOLOGICAL SHIFTS LEADING TO REVOLUTIONARY ADVANCES IN SOLID EARTH GEOSCIENCE

present

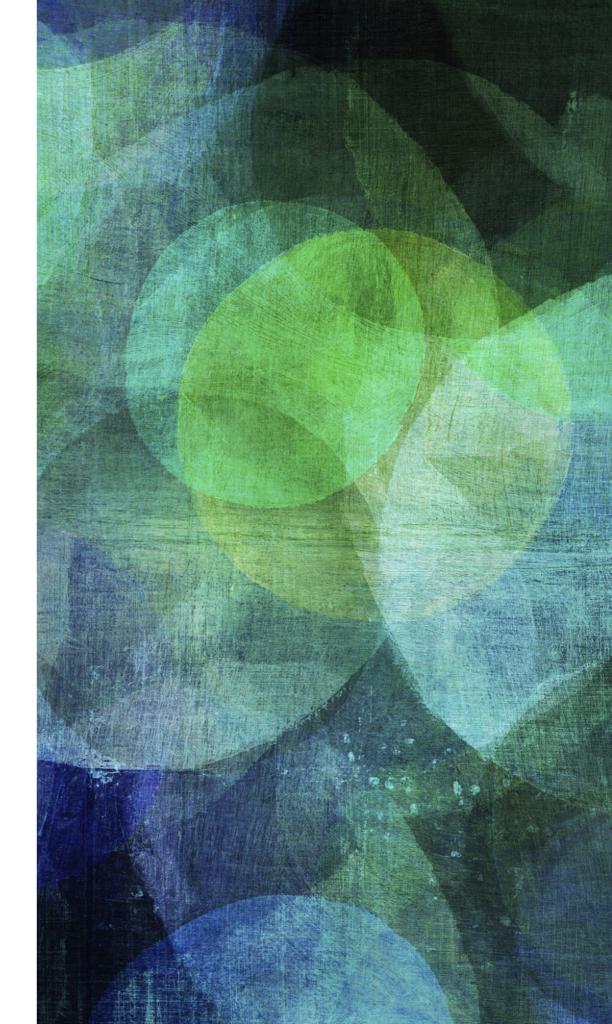
Machine learning/ big data/ ultrafast computers computers

7

SCALES OF GEOPHYSICAL PROBLEMS



Machine learning: some background



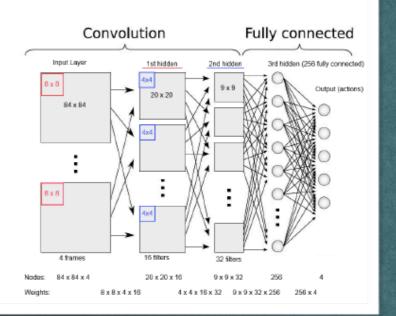
AI: WHY NOW?

Confluence of:

Big Data

Big Computers

Deep Architectures



ARTIFICIAL INTELLIGENCE

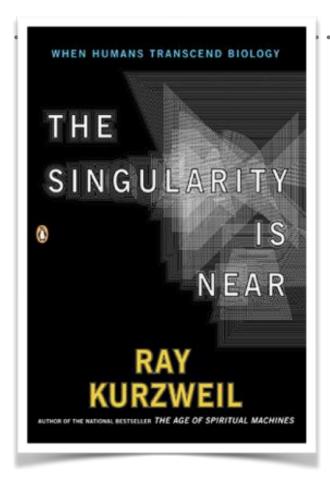
Much hyperbole, much promise

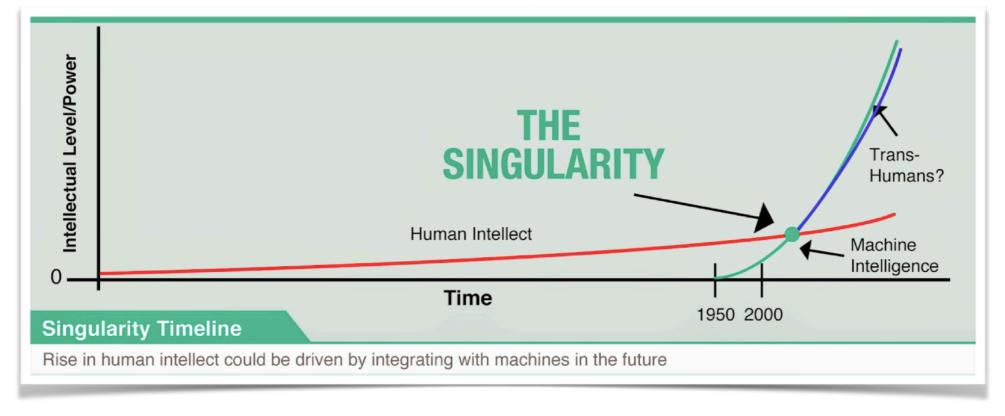
In two decades

- data availability increased by 1,000-fold, key algorithms have improved 10-fold to 100-fold, and
- hardware speed has improved by at least 100-fold.

Ninety percent of the digital data in the world today has been <u>created in the past</u> <u>two years</u> alone.

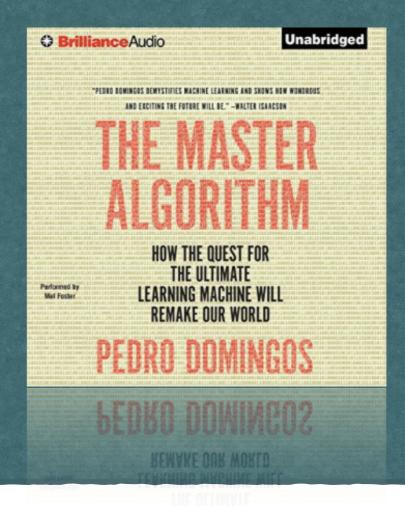
THE SINGULARITY

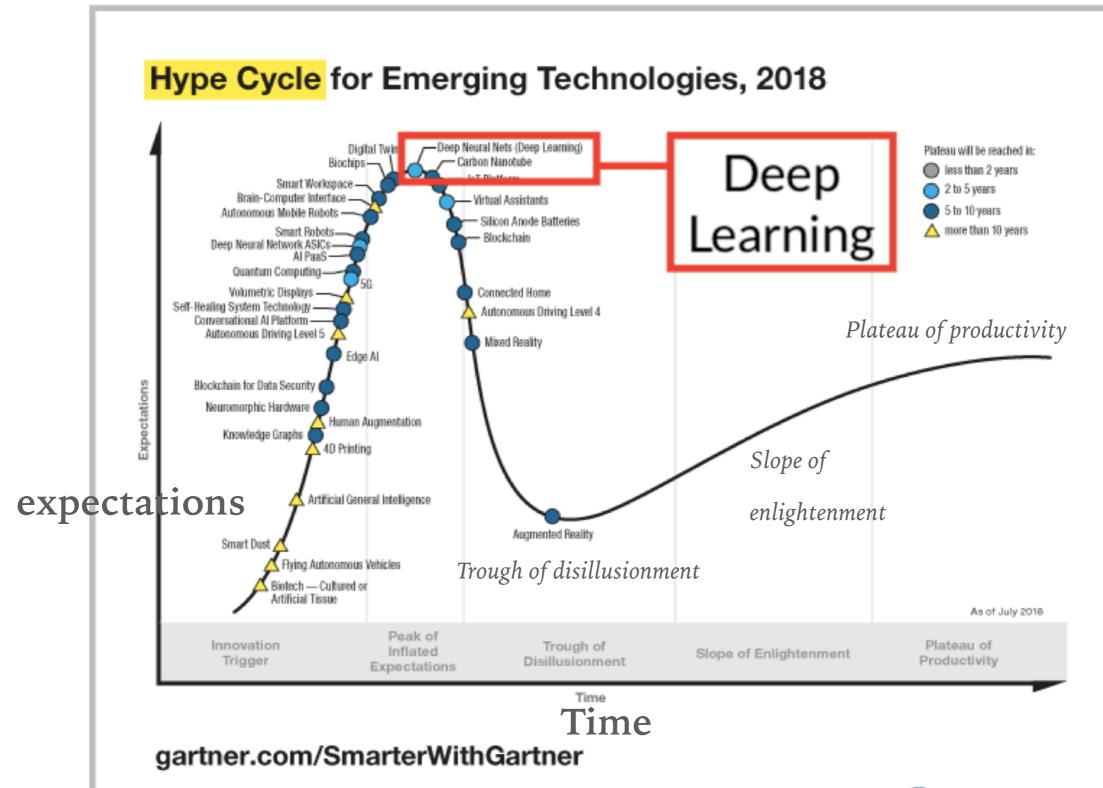




"People worry that computers will get too smart and take over the world,

but the real problem is that they're too stupid and they've already taken over the world."





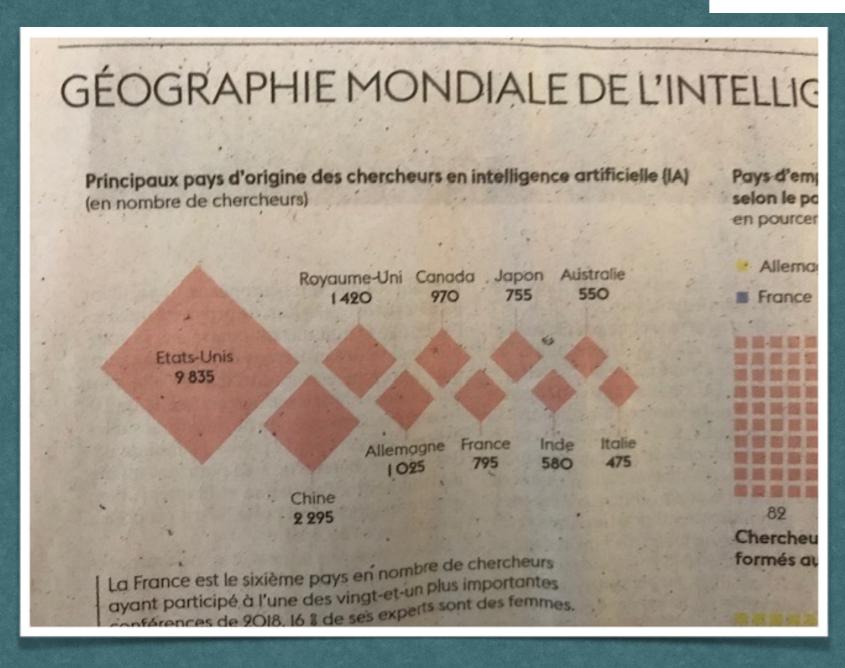
Source: Gartner (August 2018) © 2018 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner.

Modified from R. Baraniuk

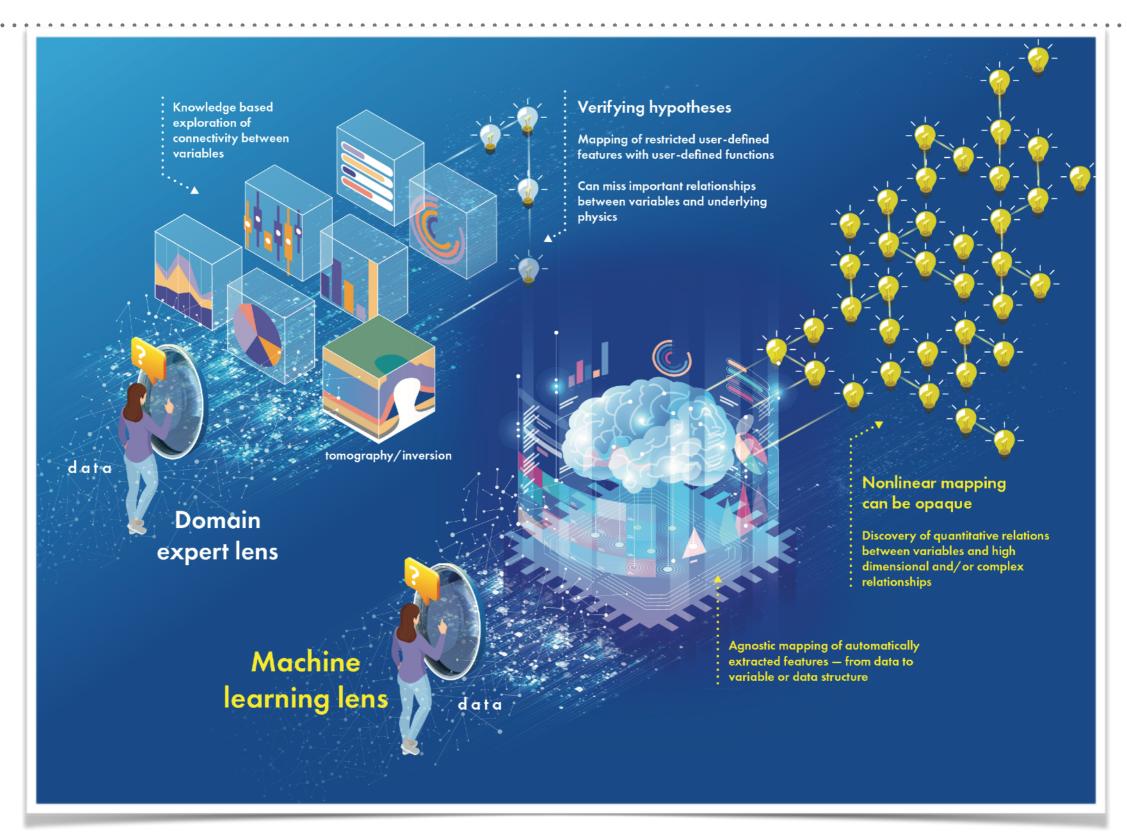
AI RESEARCHERS PER COUNTRY

La Monde, June 5, 2019

Le Monde



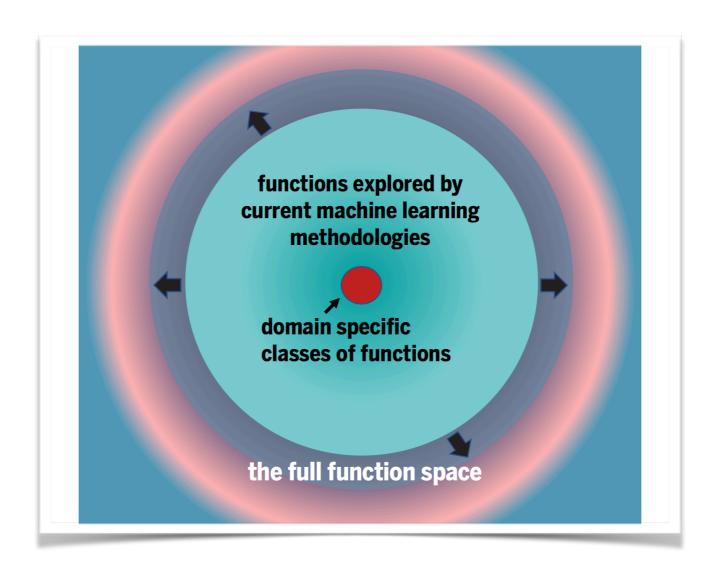
THE MACHINE LEARNING LENS



WHAT DOES IT MEAN TO APPLY THESE APPROACHES TO THE SUBSURFACE?

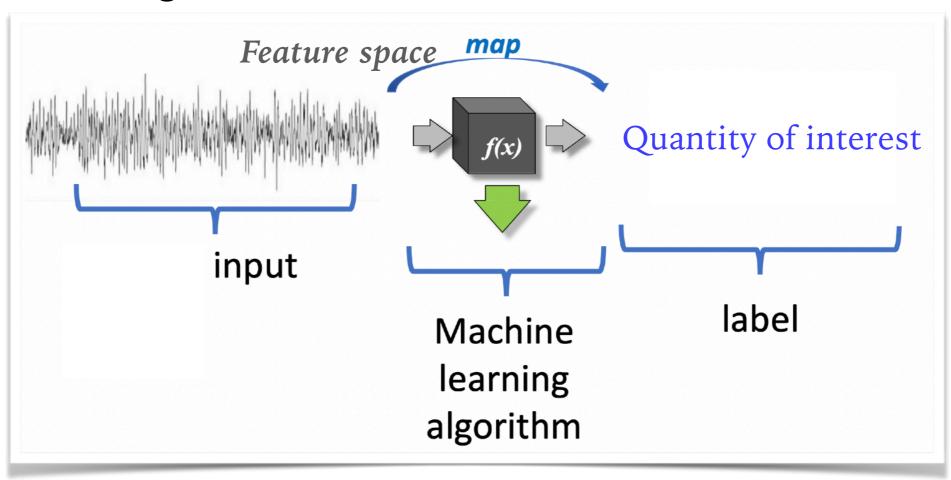
• ML/data analytics are a new tool in our toolbox.

Simply a large group of functions simultaneously applied to data Enormous advantage because of the function space explored



SUPERVISED LEARNING

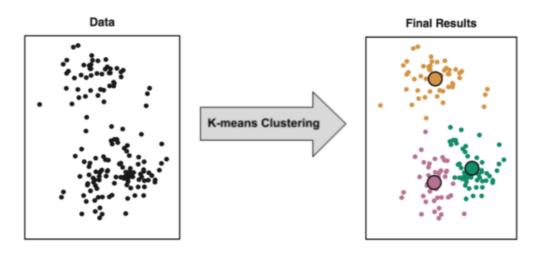
Machine learning generally involves a training procedure to build the algorithm, and then testing on a new set of data



UNSUPERVISED LEARNING

- Unsupervised learning: computers learn to "teach themselves"
 - model underlying structure or distribution in the data
 - there is no correct answer and there is no teacher.
 - algorithms left to discover interesting structure in the data

<u>Simple example</u>: classification, e.g. clustering, association k-means for clustering problems.



UNSUPERVISED AND SUPERVISED LEARNING: DEEP NEURAL NETWORKS

WIRED STAFF SCIENCE 06.26.12 11:15 AM

GOOGLE'S ARTIFICIAL BRAIN LEARNS TO FIND CAT VIDEOS

By Liat Clark, Wired UK

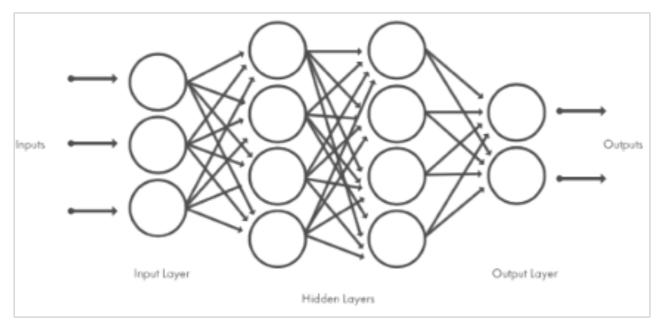
When computer scientists at Google's mysterious X lab built a neural network of 16,000 computer processors with one billion connections and let it browse YouTube, it did what many web users might do – it began to look for cats. "We never told it during the training, 'This is a cat,'" Jeff Dean, the Google fellow who led the study. "It basically invented the concept of a cat."

"The idea is that you throw a ton of data at the algorithm and have the software automatically learn from the data," --Andrew Ng, Stanford University.

DEEP LEARNING (UNSUPERVISED AND SUPERVISED APPLICATIONS)

- much more powerful than traditional ML algorithms.
- Deep neural networks are great at feature extraction: the process of figuring out what aspects of a dataset are actually useful for making predictions.

The word 'deep' comes from the fact that AI developers usually use networks with tens or hundreds of layers (and tens or hundreds of nodes per layer).



e.g., Neural network with four layers with a few nodes (2-4) per layer.

MACHINE LEARNING IS COMPRISED OF A ZOO OF TECHNIQUES

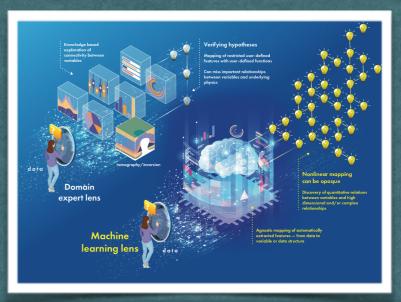
Deep Neural Networks Fast simulations & surrogate models **Recurrent Neural Networks** Inverse problems Deep **Autoencoder Networks Generative Convolutional Neural Networks Featurization Models Dynamic decisions** Reinforcement **Dictionary Learning Artifical Neural Networks** Learning **Feature Learning** Learn joint **Support Vector Machines** probability distribution **Clustering &** Prediction **Random Forests & Ensembles Self-organizing maps Detection & classification Graphical Models** Determine optimal boundary Sparse representation **Logistic Regression** Semi-Feature representation **Domain adaptation Supervised Dimensionality reduction** Learning **Supervised Learning Unsurpervised Learning**

DATA AND APPROACHES

- Most data appropriate
- Data quality is key
- 'labelled' data for supervised learning fundamental
- ML appropriate when unknown, unexpected function space must be explored

When are other approaches appropriate?

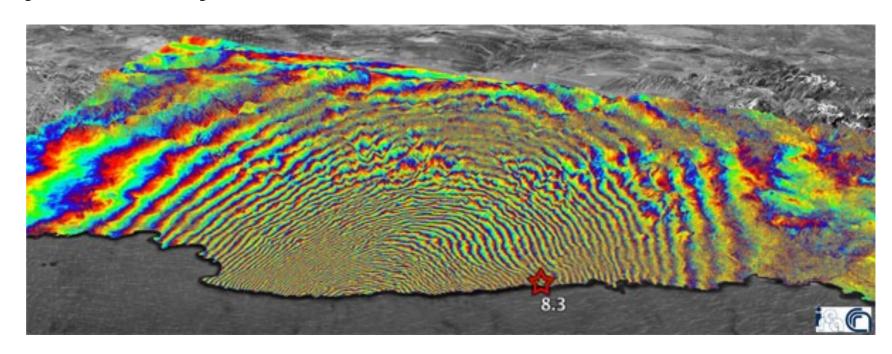
Simple questions may require simple approaches: e.g., is an FFT sufficient?



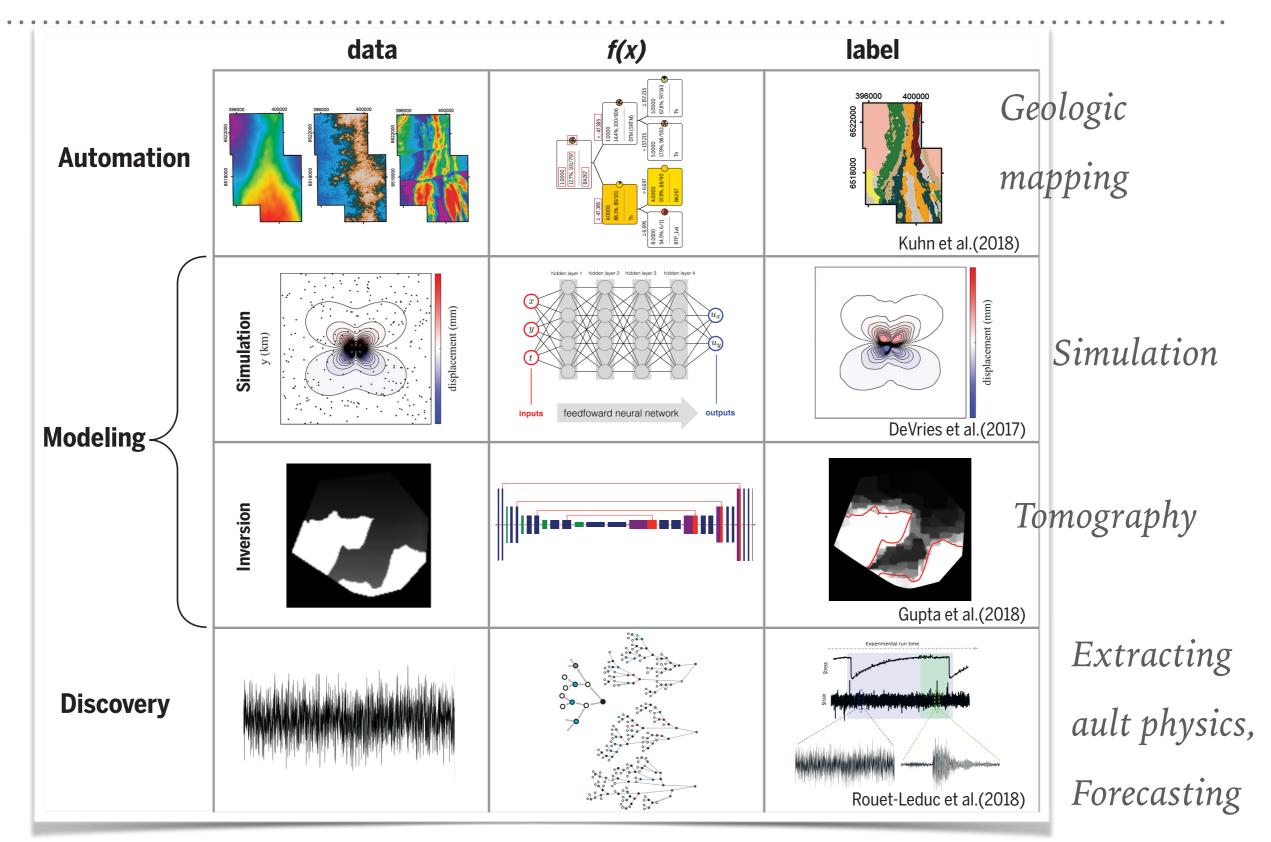
WHAT TOPICS CAN ML/AI HELP ANSWER IN GEOSCIENCE?

Nearly every topic in geoscience has applications!

- InSAR
- GPS
- Seismic Imaging (industry and basic research)
- Earthquake catalogs
- Gravity
- EM
- Geology
- Fluid flow in porous media
- Continuous geophysical analysis of all kinds.....



EXAMPLES OF GEO-APPLICATIONS



Bergen, Johnson, de Hoop and Beroza, Science (2019)

WHEN DOES MACHINE LEARNING FAIL?

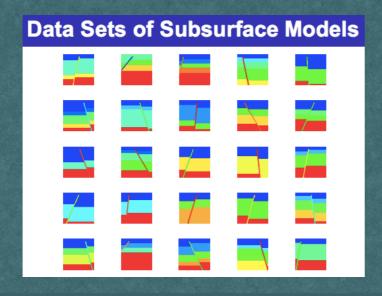
- 1. **nuisance variation in images**: changes in location, pose, viewpoint, lighting, expression, occlusion, such as Landsat imagery—
- 2. Non-stationary data
- 3. Randomness or Enthropy.: You cannot learn a pattern that does not exist
- 4. A lack of training data is one of the most common reasons why machine learning can fail.
- 5. **over-fitting:** classifier only recognizes what it has seen because the distribution of your training data does not capture the true distribution of the pattern you want to learn [Marko Živković,].

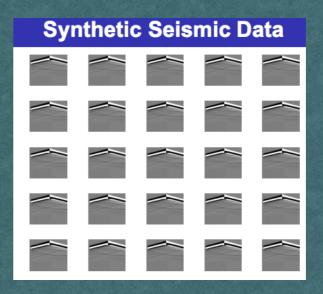
Work with experts—domain expert + ML expert a very good combination

Other challenges: Obtaining data....

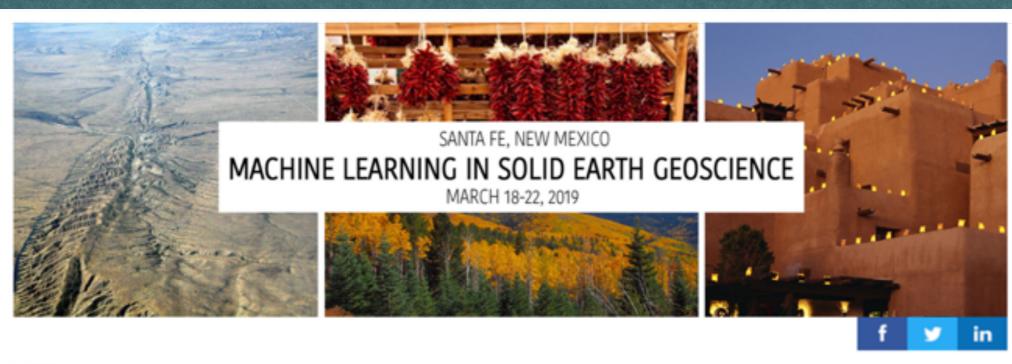
GOING TO THE FUTURE

- Geo Workshops 2019 (Montreal) and 2020 (Vancouver)
 Neurological Information Processing Systems (NeurIPS)
- Special sessions AGU, Seism. Soc. Am. 2018, 2019
- Special sessions SEG, IEEE
- Industry focused meetings





GOING TO THE FUTURE



WHEN

Monday, March 18, 2019 - Friday, March 22, 2019

WHERE

Santa Fe, New Mexico

Registration opening soon!

SUMMARY

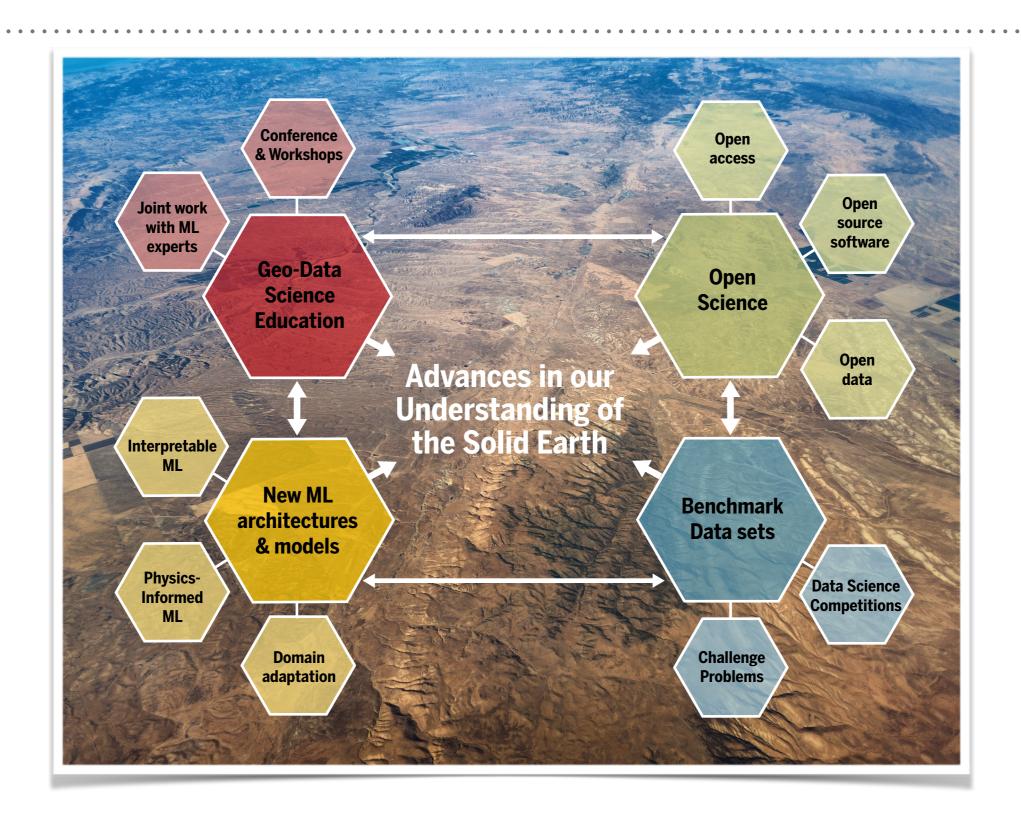
Machine learning (ML) in its current form is relatively new to geoscience. In the past, ML was applied to a number of geoscience problems but the number of applications before about 2010 was modest. These applications of ML did not reach their full potential for three primary reasons: scarcity of sufficient data for training and testing, the

2020 meeting March in Santa Fen Santa Fe

COMPETITIONS

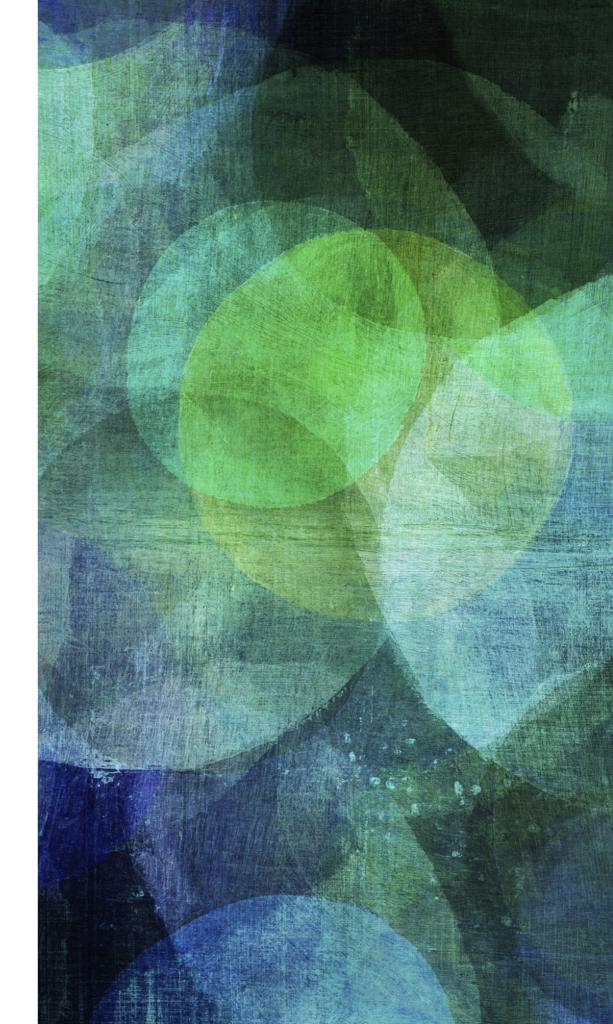
kaggle Competitions Datasets Kernels Discussion Learn · · · (A) Research Prediction Competition **LANL Earthquake Prediction** \$50,000 **Prize Money** Can you predict upcoming laboratory earthquakes? Los Alamos National Laboratory 4,540 teams a day ago **Join Competition** Discussion Leaderboard Rules Overview Kernels

CONCLUSION: HOW DO WE PROCEED?



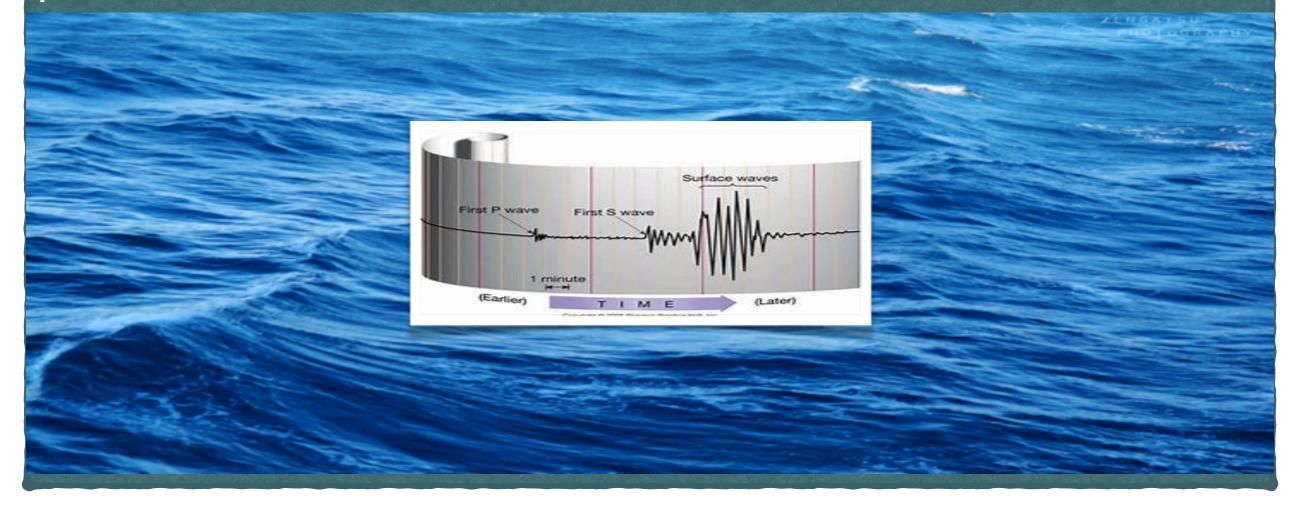
BACKUP SLIDES ON SOME OF THE LOS ALAMOS WORK

Geophysical
studies of
faults applying ML:
a supervised
learning approach



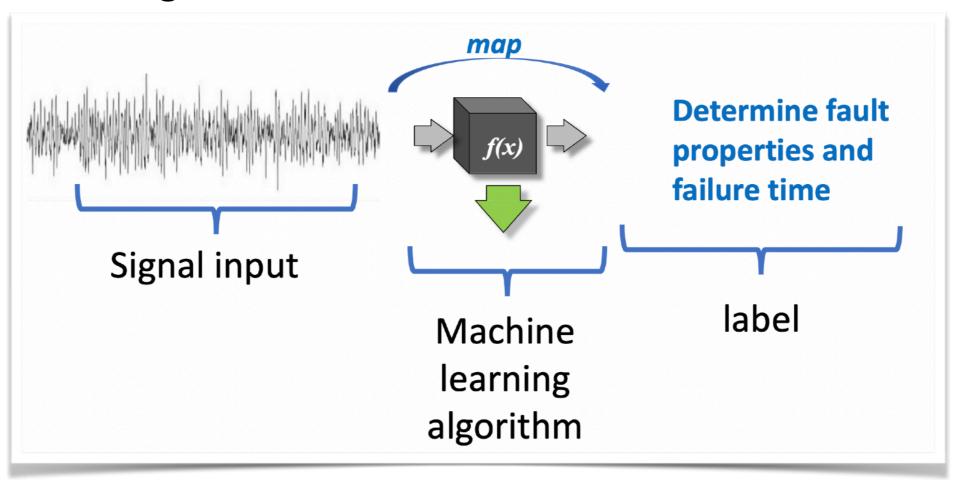
SEISMIC SIGNALS

Slip on earthquakes is manifest by individual seismic signals in a sea of background noise that tell us an earthquake took place.

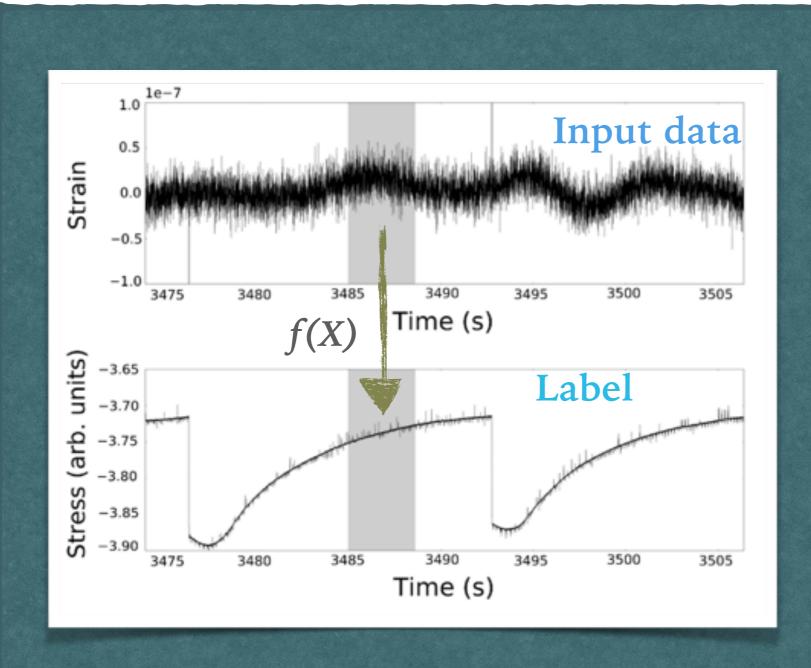


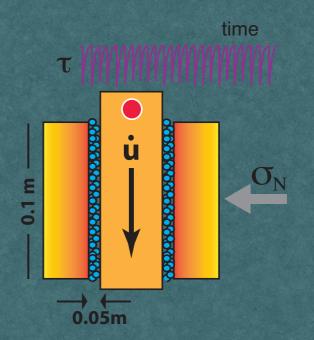
SUPERVISED LEARNING

Machine learning generally involves a training procedure to build the algorithm, and then testing on a new set of data



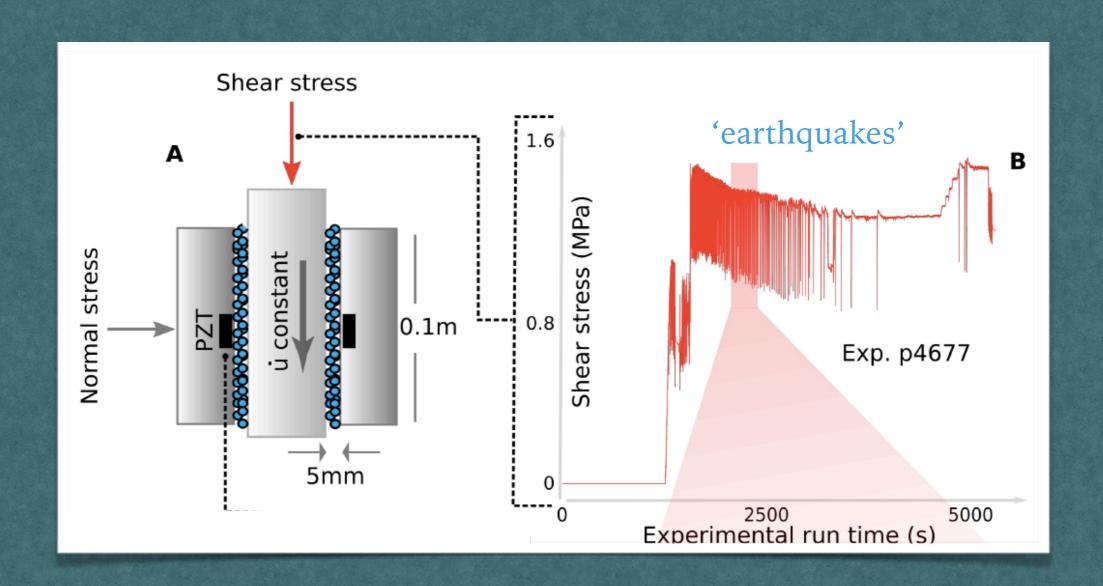
LABORATORY STUDY OF FAULT PHYSICS



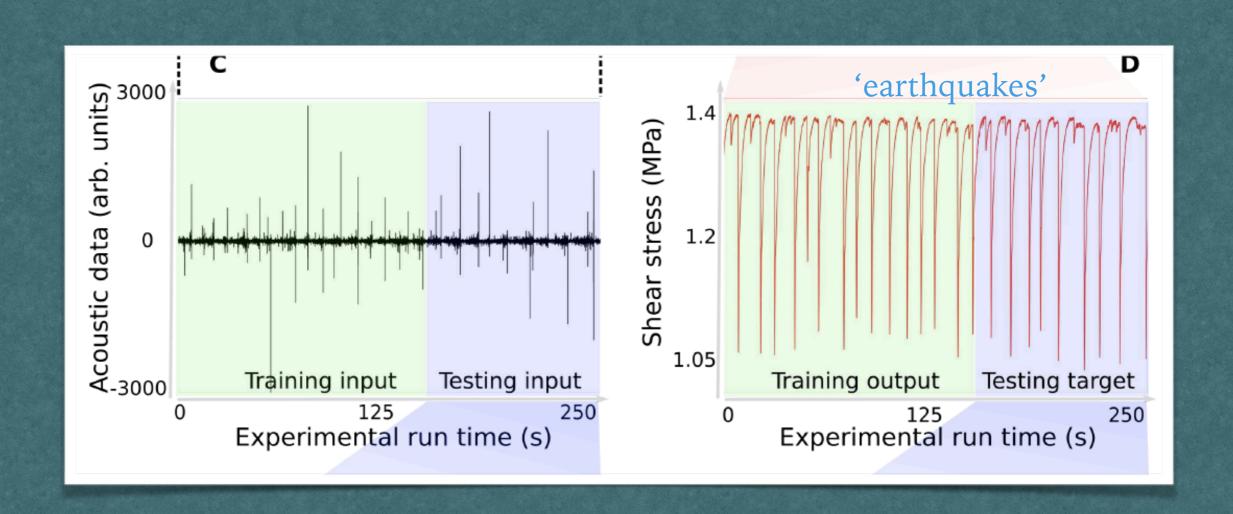


Can we learn the fault mechanics using only the acoustical signal recorded on the experiment?

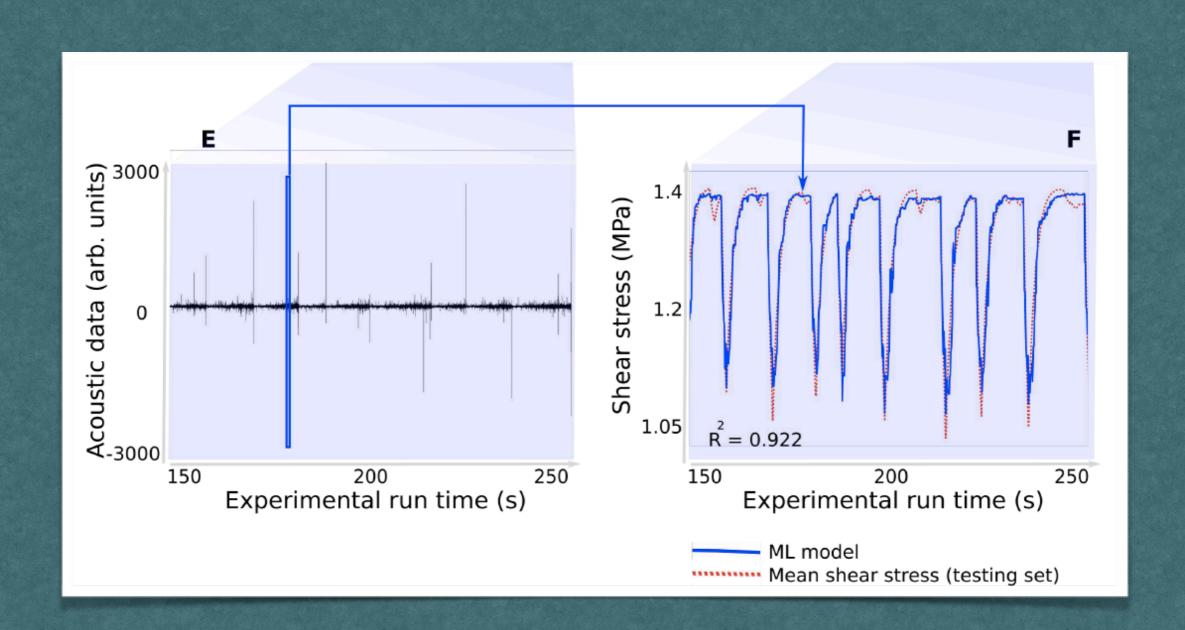
ML RESULT



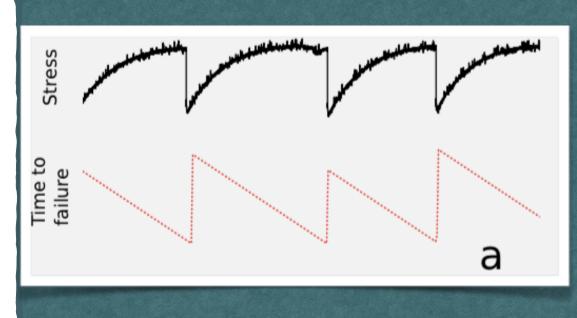
ML TRAINING AND TESTING DATA SETS

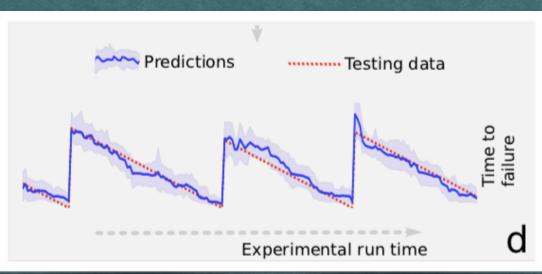


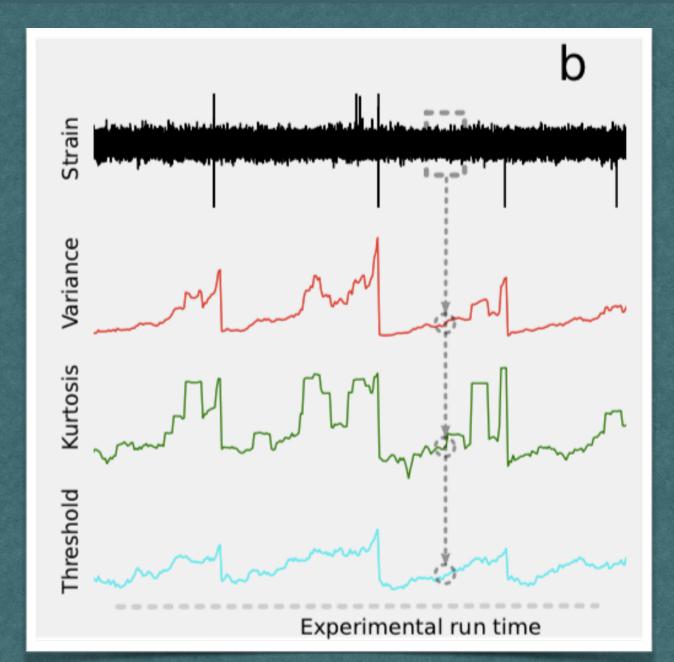
TESTING: ML RESULT



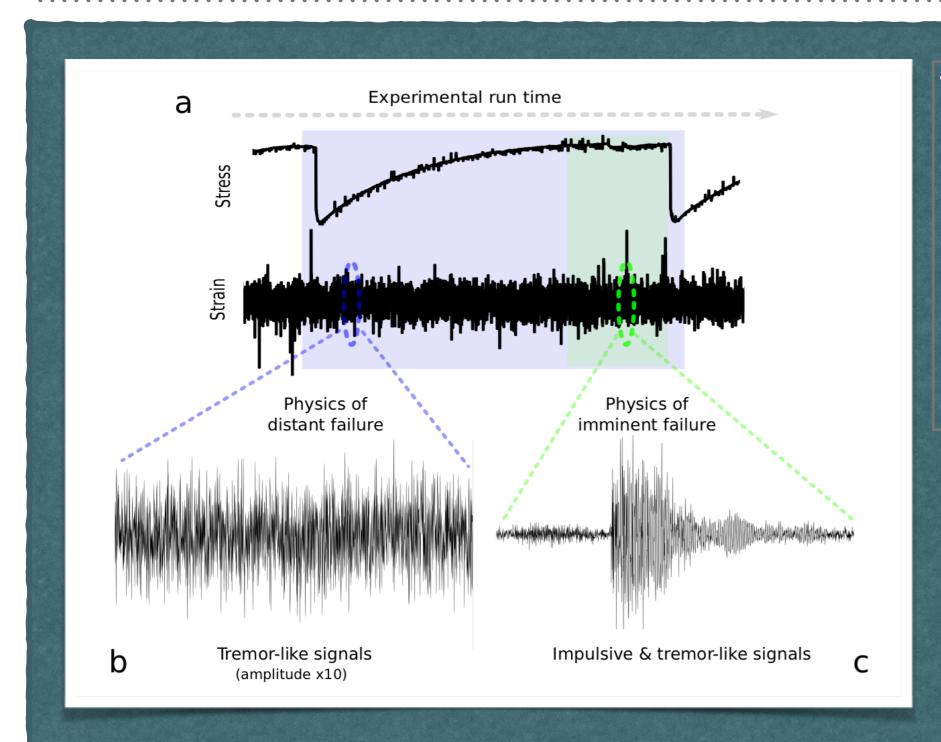
EVENT TIMING FORECAST





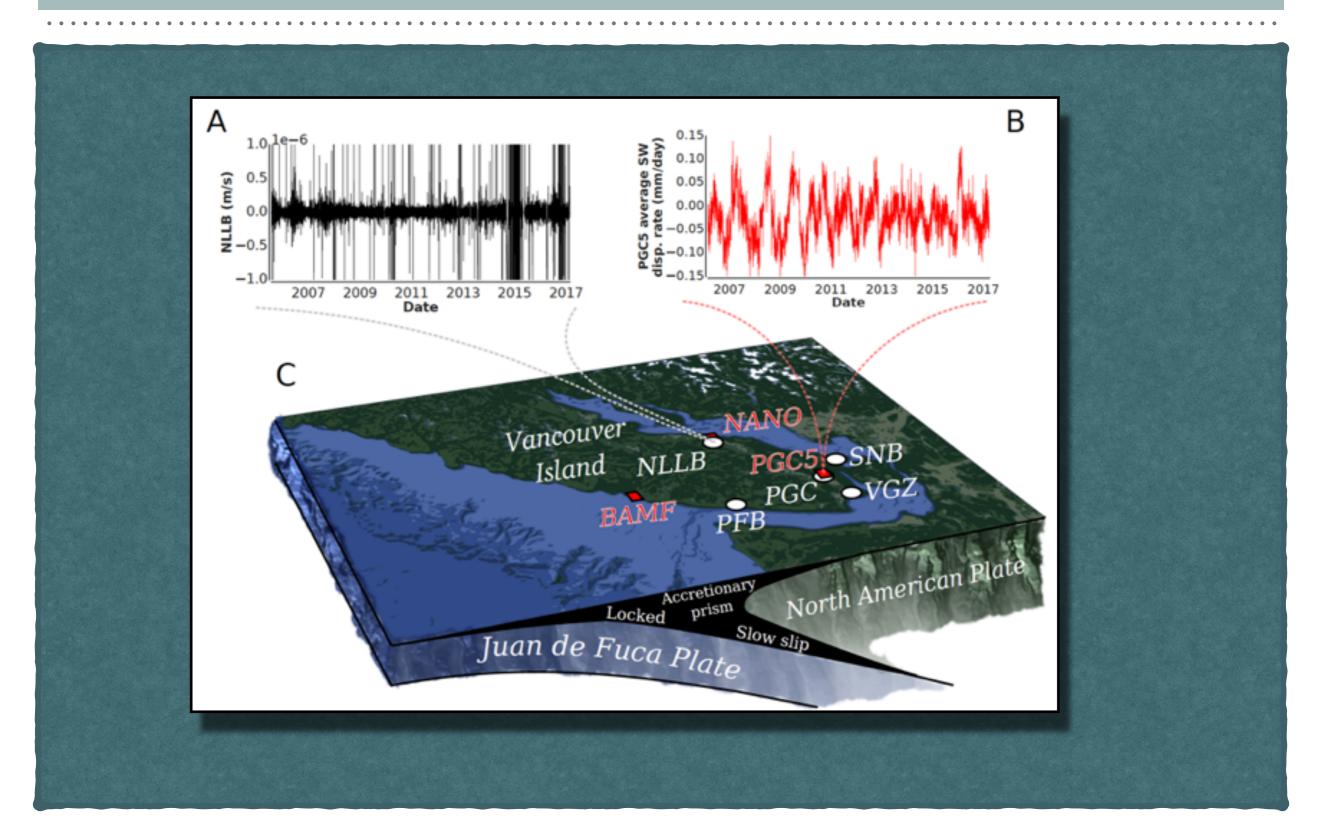


UNKNOWN SIGNAL REVEALED BY ML



The tremor tells us the gouge is mobile and chattering, post failure. Very quickly after a quake, the material has rearranged itself in preparation for the quake.

SCALE TO EARTH? SLOW SLIP IN CASCADIA



CASCADIA DISPLACEMENT RATE

