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TECHNOLOGICAL SHIFTS LEADING TO REVOLUTIONARY
ADVANCES IN SOLID EARTH GEOSCIENCE

1900-1950s

Magentometer

Nuclear testing

Spacecraft/satellite

Oceanic research vessels

Widely available computers

Invention of the WWW

Energy technology advances

Superfast Computers

GPS, InNSAR

Gaming and GPUs

pole reversals

basis of modern seismology

origin of KT extinction, GPS, Earth imagery.....

Discovery of magnetic stripes in oceanic basalt-proof of

plate tectonics (in the 1960’s)
massive advances in imaging, simulating Earth

processes. data processinad....)

revolutionary access to information and data

e.g., horizontal drilling

dramatic advances in waveform inversion, large scale

simulation etc.)
dramatic advances in measuring Earth surface

displacement
dramatic advances in waveform inversion, large scale

simulation etc.)




TECHNOLOGICAL SHIFTS LEADING TO REVOLUTIONARY
ADVANCES IN SOLID EARTH GEOSCIENCE




SCALES OF GEOPHYSICAL PROBLEMS
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Confluence of:

Big Data

Figure courtesy Rich Baraniuk

Big Computers
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ARTIFICIAL INTELLIGENCE

Much hyperbole, much promise
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In two decades =
 data availability increased by 1,000-fold, Cl :I I( ,‘,

key algorithms have improved 10-fold to
100-fold, and

hardware speed has improved by at
least 100-fold.

Ninety percent of the digital data in the "t TRANSFORMS

world today has been created in the past SCIENCE P

two vears alone.




THE SINGULARITY
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Rise in human intellect could be driven by integrating with machines in the future




"People worry that computers will get too smart and take over the
world,

but the real problem is that they're too stupid and they've already
taken over the world.”

HOW THE QUEST FOR
THE ULTIMATE
i LEARNING MACHINE WILL
REMAKE OUR WORLD




Hype Cycle for Emerging Technologies, 2018

Deap Neural Nets |Deep [2amng)
Carbon Nanotube

Pt will be reaachiesd in:

Deep ey

@ 5o 10 years

Digtal ™w
Biochps

St Werkspace
Bram-Compuler Wtertacs
Altonomois Molde Robols

Yirtual Assistants

- . .
Smant Robals :;O&f;:k Falies AN\ more Ban 10 pears
Dessp Newsd Network ASKCs
Al PaaS

(uantum Computng 1
Volimetric Displwys A - Connecied Home
Sedl-Healing System Techaohgy N
e mmamts rivig Lo S Plateau of productivit
Atcaamots Drving Level 5 2N Mined ey p Y
Edga Al
g Bleckcham for Data Secunty
- Newomorphic Hardware
o /% Human Augmentation
2 Knowledge Graphs
= A5\ AD Printing
“ Slope of
eX e Ct a io n S /N Antfcal General Inteligance .
P enlightenment
Smart Dust /X Augmented Reality

/N, Flying Autonomous Vehicks

Trough of disillusionment
g Bolech — Culueed o

Attificial Tessue
As ot July 2078
: " Peak of T b of Plat f
nnovation : rough o . ateau o
inflated g . - "
Trigger Dislllusionment Slope of Enlightenment Productivity

Expectations

Time
Time
gartner.com/SmarterWithGartner
Q?E(;:: (f::':tr:rr |$‘Q;:;'i':':; affiliates. All rights resarved. Gartner.

Modified from R. Baraniuk
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THE MACHINE LEARNING LENS

. Knowledge based Verifying hypotheses

. exploration of

E connectivity between i . Mapping of restricted user-defined
+ variables : . features with user-defined functions

. Can miss important relationships
. between variables and underlying
: physics

Nonlinear mapping
. can be opaque

Domadéin Y : g .
experi‘ Iens I'. : - ‘ R : 1 between variables and high

: dimensional and/ or complex
. relationships

. Discovery of quantitative relations

Agnostic mapping of automatically

chhine i . v .' P c’ - extracted features — from data to
TR e e + variable or data structure
learning lens

Bergman, Johnson, de Hoop, Beroza Science (2019)




WHAT DOES IT MEAN TO APPLY THESE APPROACHES TO THE SUBSURFACE?

o ML/data analytics are a new tool in our toolbox.
Simply a large group of functions simultaneously applied to data
Enormous advantage because of the function space explored

the full function space

Bergen, Johnson, de Hoop and Beroza, Science (2019)



SUPERVISED LEARNING
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Machine learning generally involves a training
procedure to build the algorithm, and then
testing on a new set of data

Feature space ne
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UNSUPERVISED LEARNING
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* Unsupervised learning: computers learn to “teach
themselves”

— model underlying structure or distribution in the data
— there is no correct answer and there is no teacher.
— algorithms left to discover interesting structure in the data

Simple example: classification, e.g. clustering, association k-
means for clustering problem:s.

Data Final Results
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UNSUPERVISED AND SUPERVISED LEARNING: DEEP NEURAL NETWORKS

GOOGLE'S ARTIFICIAL BRAIN
LEARNS TO FIND CAT VIDEOS

"We never told it during the training, 'This
is a cat,'" Jeff Dean, the Google fellow
who led the study. "It basically invented
the concept of a cat.”

"The idea is that you throw a ton of data at
the algorithm and have the software
automatically learn from the data," --
Andrew Ng, Stanford University.

By Liat Clark, Wired UK

When computer scientists at Google’s mysterious X lab built
a neural network of 16,000 computer processors with one
billion connections and let it browse YouTube, it did what
many web users might do - it began to look for cats.



DEEP LEARNING (UNSUPERVISED AND SUPERVISED APPLICATIONS)
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* much more powerful than traditional ML algorithms.

* Deep neural networks are great at feature extraction: the
process of figuring out what aspects of a dataset are
actually useful for making predictions.

The word ‘deep’ comes from
the fact that Al developers

usually use networks with
tens or hundreds of layers -
(and tens or hundreds of b Gm— Outprsts
nodes per layer). O —

L e

e.g., Neural network with four layers with a few nodes (2-4) per layer.



Deep Neural Networks

Bergen, Johnson, de Hoop and Beroza, Science (2019)



DATA AND APPROACHES

Most data appropriate
Data quality is key
‘labelled’ data for supervised learning fundamental

ML appropriate when unknown, unexpected function space
must be explored
When are other approaches appropriate?

Simple questions may require simple approaches:
e.g., is an FFT sufficient?

i {4 desddee




WHAT TOPICS CAN ML/AI HELP ANSWER IN GEOSCIENCE?

Nearly every topic in geoscience has applications!
INSAR

GPS

Seismic Imaging (industry and basic research)
Earthquake catalogs

Gravity

EM

Geology

Fluid flow in porous media

Continuous geophysical analysis of all kinds.....




EXAMPLES OF GEO-APPLICATIONS
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WHEN DOES MACHINE LEARNING FAIL?

. huisance variation in images: changes in location, pose, viewpoint, lighting,
expression, occlusion, such as Landsat imagery —

. Non-stationary data

. Randomness or Enthropy.: You cannot learn a pattern that does not exist

. A lack of training data is one of the most common reasons why machine learning
can fail.

. over-fitting: classifier only recognizes what it has seen because the distribution of
your training data does not capture the true distribution of the pattern you want to

learn [Marko Zivkovié,].

Work with experts—domain expert + ML expert a very good combination

Other challenges:
Obtaining data....



https://www.quora.com/profile/Marko-%C5%BDivkovi%C4%87-8
https://www.quora.com/profile/Marko-%C5%BDivkovi%C4%87-8

GOING TO THE FUTURE

» Geo Workshops 2019 (Montreal) and 2020 (Vancouver)
Neurological Information Processing Systems (NeurIPS)

» Special sessions AGU, Seism. Soc. Am. 2018, 2019
Special sessions SEG, IEEE

» Industry focused meetings

»
Y

Data Sets of Subsurface Models
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GOING TO THE FUTURE

SANTA FE, NEW MEXICO

MACHINE LEARNING IN SOLID EARTH GEOSCIENCE

MARCH 18-22, 2019

WHEN 2 . .
— Registration opening soon!

Monday, March 18, 2019 - Friday, March 22, 2019

SUMMARY

f Add 10 Calendar

WHERE Machine leaming (ML) in its current form Is relatively new to geoscience. In the past, ML was applied to a number
of gecscience problems but the number of applications before about 2010 was modest. These applications of ML

Santa Fe, New Mexico did not reach their full potential for three primary reasons: scarcity of sufficient data for training and testing, the
LISA amn .t o .n ras A4 .ama. o : : - - — as :

2020 meeting March in Santa Fe




COMPETITIONS

Q Competitions Datasets Kernels Discussion

';' Research Prediction Competition

LANL Earthquake Prediction $50,000

Can you predict upcoming laboratory earthquakes? Prize Money

= Los Alamos National Laboratory - 4,540 teams - a day ago

Data Kernels Discussion Leaderboard Rules

U.S. DEPARTMENT OF Office of

ENERGY Science




CONCLUSION: HOW DO WE PROCEED?
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BACKUP SLIDES ON SOME OF THE LOS ALAMOS WORK
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SEISMIC SIGNALS

Slip on earthgquakes is manifest by individual seismic signals

In a sea of background noise that tell us an earthquake took




SUPERVISED LEARNING
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Machine learning generally involves a training
procedure to build the algorithm, and then
testing on a new set of data
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LABORATORY STUDY OF FAULT PHYSICS
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Rouet-LeDuc et al, Geophys. Res. Lett, 2017; 2018




ML RESULT

Exp. p4677
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ML TRAINING AND TESTING DATA SETS
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TESTING: ML RESULT
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EVENT TIMING FORECAST
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UNKNOWN SIGNAL REVEALED BY ML

Experimental run time The tremor tells us the
gouge is mobile and
chattering, post
failure. Very quickly
after a quake, the
material has re-
arranged itself in
preparation for the
quake.

g Physics of K% Physics of
distant failure ‘.\ imminent failure

M» WW M T
b

Tremor-like signals Impulsive & tremor-like signals C
(amplitude x10)

Rouet-LeDuc, Geophys. Res. Lett, 2017




SCALE TO EARTH? SLOW SLIP IN CASCADIA
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CASCADIA DISPLACEMENT RATE

0.20 Out sample MAE: 0.0398
- 015
>
()
g 2 0.10|
s &
©
‘u't' § 0.05
Q
n o
3 2 0.00|
-
wn
O
o E -0.05
>
;, 8 -o.10
v Qo
R
T 015 Observations 75% estimation inverval
— Model 90% estimation inverval
50% estimation inverval
-0.20¢
2012 2013 2014 2015 2016 2017
Date
e T

Rouet-LeDuc, Hulbert & PAJ, Nature Geosciences, 2019



