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TECHNOLOGICAL SHIFTS LEADING TO REVOLUTIONARY  
ADVANCES IN SOLID EARTH GEOSCIENCE 

  1900-1950s Radiometric dating age of Earth 

1930’s Magentometer pole reversals 

1950s Nuclear testing basis of modern seismology 

1960’s + Spacecraft/satellite origin of KT extinction, GPS, Earth imagery….. 

WWII Oceanic research vessels Discovery of magnetic stripes in oceanic basalt-proof of 
plate tectonics (in the 1960’s) 

1980’s+ Widely available computers massive advances in imaging, simulating Earth 
processes, data processing….) 

1980’s Invention of the WWW revolutionary access to information and data 

1990’s Energy technology advances e.g., horizontal drilling

1980’+ Superfast Computers  dramatic advances in waveform inversion, large scale 
simulation etc.) 

2010’s GPS, InSAR  dramatic advances in measuring Earth surface 
displacement

present Gaming and GPUs dramatic advances in waveform inversion, large scale 
simulation etc.) 



TECHNOLOGICAL SHIFTS LEADING TO REVOLUTIONARY  
ADVANCES IN SOLID EARTH GEOSCIENCE 

  
present

Machine learning/ big data/ 
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SCALES OF GEOPHYSICAL PROBLEMS
  



Machine learning: 
some background



AI:  WHY NOW?
  

Figure courtesy Rich Baraniuk

Confluence of:



  

ARTIFICIAL INTELLIGENCE

Lots of excitement, lots of hyperboleMuch hyperbole, much promise

In two decades 
• data availability  increased by 1,000-fold, 

key algorithms have improved 10-fold to 
100-fold, and 

• hardware speed has improved by at 
least 100-fold. 

Ninety percent of the digital data in the 
world today has been created in the past 
two years alone.



THE SINGULARITY



AI
  

“People worry that computers will get too smart and take over the 
world,

but the real problem is that they’re too stupid and they’ve already 
taken over the world.”



Slope of  
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Modified from R. Baraniuk



AI RESEARCHERS PER COUNTRY

La Monde, June 5, 2019 



THE MACHINE LEARNING LENS

Bergman, Johnson, de Hoop, Beroza Science (2019)



WHAT DOES IT MEAN TO APPLY THESE APPROACHES TO THE SUBSURFACE?

ML/data analytics are a new tool in our toolbox. 
Simply a large group of functions simultaneously applied to data 
Enormous advantage because of the function space explored  

Bergen, Johnson, de Hoop and Beroza, Science (2019)



SUPERVISED LEARNING

Machine learning generally  involves a training 
procedure to build the algorithm, and then 
testing on a new set of data

Feature space

Quantity of interest



UNSUPERVISED LEARNING

• Unsupervised learning: computers learn to “teach 
themselves”
– model underlying structure or distribution in the data
– there is no correct answer and there is no teacher. 
– algorithms left to discover interesting structure in the data

Simple example: classification, e.g. clustering, association k-
means for clustering problems.



UNSUPERVISED AND SUPERVISED LEARNING: DEEP NEURAL NETWORKS

"We never told it during the training, 'This 
is a cat,'" Jeff Dean, the Google fellow 
who led the study.  "It basically invented 
the concept of a cat.” 

"The idea is that you throw a ton of data at 
the algorithm and have the software 
automatically learn from the data," --
Andrew Ng, Stanford University.



DEEP LEARNING (UNSUPERVISED AND SUPERVISED APPLICATIONS)

• much more powerful than traditional ML algorithms.
• Deep neural networks are great at feature extraction: the 

process of figuring out what aspects of a dataset are 
actually useful for making predictions.

The word ‘deep’ comes from 
the fact that AI developers 
usually use networks with 
tens or hundreds of layers 
(and tens or hundreds of 
nodes per layer).

e.g., Neural network with four layers with a few nodes (2-4) per layer. 



MACHINE LEARNING IS COMPRISED OF A ZOO OF TECHNIQUES

Deep Neural Networks

Autoencoder Networks

Feature Learning

Dictionary Learning

Dynamic decisions

Inverse problems

Fast simulations & surrogate models

Recurrent Neural Networks

Convolutional Neural Networks

Artifical Neural Networks

Support Vector Machines

Random Forests & Ensembles

Graphical Models

Logistic Regression

Reinforcement
Learning

Featurization

Prediction

Detection & classification

Determine optimal boundary

Domain adaptation

Sparse representation

Feature representation

Dimensionality reduction

Learn joint
probability 
distribution

Semi-
Supervised

Learning

Clustering &
Self-organizing maps

Unsurpervised Learning

Supervised Learning

Deep
Generative

Models

Bergen, Johnson, de Hoop and Beroza, Science (2019)



DATA AND APPROACHES 

  Most data appropriate
Data quality is key

‘labelled’ data for supervised learning fundamental  

When are other approaches appropriate?
Simple questions may require simple approaches:   

e.g., is an FFT sufficient?

ML appropriate when unknown, unexpected function space
must be explored



WHAT TOPICS CAN ML/AI HELP ANSWER IN GEOSCIENCE?
Nearly every topic in geoscience has applications!

InSAR
GPS
Seismic Imaging (industry and basic research)
Earthquake catalogs
Gravity
EM
Geology
Fluid flow in porous media
Continuous geophysical analysis of all kinds…..

  
 



EXAMPLES OF GEO-APPLICATIONS
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Bergen, Johnson, de Hoop and Beroza, Science (2019)
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WHEN DOES MACHINE LEARNING FAIL?

1. nuisance variation in images: changes in location, pose, viewpoint, lighting, 
expression, occlusion, such as Landsat imagery—

2. Non-stationary data
3. Randomness or Enthropy.:  You cannot learn a pattern that does not exist
4. A lack of training data is one of the most common reasons why machine learning 

can fail.
5. over-fitting:  classifier only recognizes what it has seen because the distribution of 

your training data does not capture the true distribution of the pattern you want to 
learn [Marko Živković,].

Work with experts—domain expert + ML expert a very good combination

Other challenges:
Obtaining data….

 ,

https://www.quora.com/profile/Marko-%C5%BDivkovi%C4%87-8
https://www.quora.com/profile/Marko-%C5%BDivkovi%C4%87-8


GOING TO THE FUTURE
  

Geo Workshops 2019 (Montreal) and 2020 (Vancouver)  

Neurological Information Processing Systems (NeurIPS) 

Special sessions AGU, Seism. Soc. Am. 2018, 2019 

Special sessions SEG, IEEE 

Industry focused meetings



GOING TO THE FUTURE
  

2020 meeting March in Santa Fen Santa Fe



COMPETITIONS



CONCLUSION: HOW DO WE PROCEED?

Conference
& Workshops

Joint work
with ML
experts

Interpretable
ML

Physics-
Informed

ML

Domain
adaptation

Challenge
Problems

Data Science
Competitions

Open
data

Open
source

software

Open
Science

Advances in our
Understanding of

the Solid Earth

Benchmark
Data sets

Geo-Data
Science

Education

New ML
architectures

& models

Open
access



BACKUP SLIDES ON SOME OF THE LOS ALAMOS WORK



Geophysical  
studies of  

faults applying ML: 
a supervised 

learning approach



SEISMIC SIGNALS

  
Slip on earthquakes is manifest by individual seismic signals 
in a sea of background noise that tell us an earthquake took 
place.



SUPERVISED LEARNING

Machine learning generally  involves a training 
procedure to build the algorithm, and then 
testing on a new set of data



LABORATORY STUDY OF FAULT PHYSICS
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Can we learn the fault 
mechanics using only 
the acoustical signal 
recorded on the 
experiment?

Rouet-LeDuc et al, Geophys. Res. Lett, 2017; 2018

Label

Input data



ML RESULT

Rouet-LeDuc et al., Geophys. Res. Lett, 2018

‘earthquakes’



ML TRAINING AND TESTING DATA SETS

Rouet-LeDuc et al., Geophys. Res. Lett, 2018

‘earthquakes’



TESTING:  ML RESULT

Rouet-LeDuc et al., Geophys. Res. Lett, 2018



EVENT TIMING FORECAST

Rouet-LeDuc et al., Geophys. Res. Lett, 2017



UNKNOWN SIGNAL REVEALED BY ML

Rouet-LeDuc, Geophys. Res. Lett, 2017

The tremor tells us the 
gouge is mobile and 
chattering,  post 
failure.  Very quickly 
after a quake, the 
material has re-
arranged itself in 
preparation for the 
quake.  



SCALE TO EARTH?  SLOW SLIP IN CASCADIA
  

Rouet-LeDuc, Hulbert & PAJ, Nature Geosciences, 2019



CASCADIA DISPLACEMENT RATE

Rouet-LeDuc, Hulbert & PAJ, Nature Geosciences, 2019


