

Problem Formulation: Lessons and Tools from Practical Applications Involving Systematic Review of Mechanistic Data

Dr. Daniele Wikoff

Health Sciences Practice Director

Disclosure

Travel to meeting supported by the NAS

Practitioner of systematic review (SR) and evidence-based methods applied in the fields of toxicology and risk assessment (including chemicals, food ingredients/ contaminants, etc.)

Vice-Chair, Science Advisory Committee, Evidence Based Toxicology Collaboration (http://www.ebtox.org/)

Member of Tox21, RoB and Education workgroups

Associate Editor (Systematic Review), Toxicological Sciences; active peer reviewer of SR for other journals

Objectives

- 1. Highlight the complexities of problem formulation as it relates to use of mechanistic data in risk assessment facilitated by systematic review
- 2. Provide an appreciation of the challenges encountered during the practice of systematically reviewing mechanistic data (and potential solutions that can be addressed during problem formulation)

Common Components of Systematic Review

Problem Formulation

- Scoping, scientific needs/objectives, feasibility
- Develop PECO question/statement and context

Protocol Development

- Determine methods for selecting, appraising, and evaluating evidence
- Document methods (a priori)

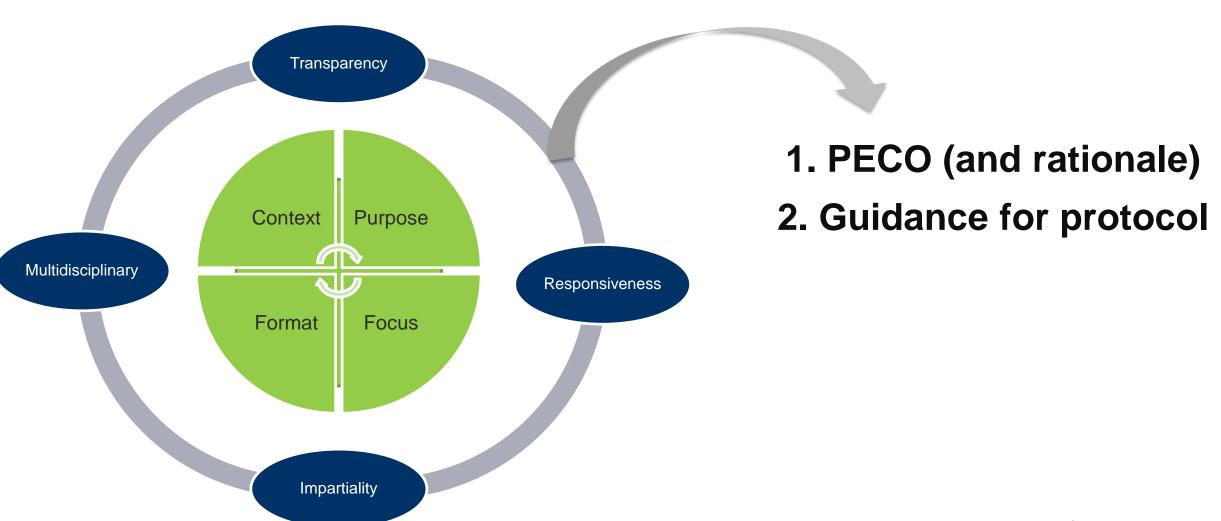
Identify Evidence Base

- Implement search strategy (syntax, databases, etc.)
- Screen and select studies via inclusion/exclusion criteria

Individual Study Assessment

- Extract data
- Critical appraisal for risk of bias (internal validity) and possibly other elements of study quality/relevance

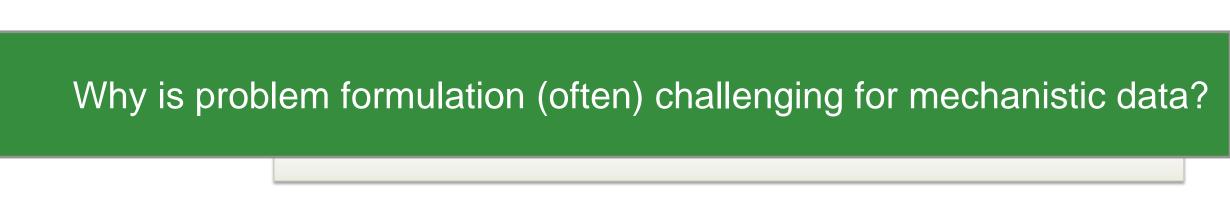
Body of Evidence Assessment


- Qualitative synthesis and integration includes assessment of confidence (consistency, magnitude, dose-response, etc.)
- Quantitative synthesis and integration (e.g., meta-analyses, meta-regression)

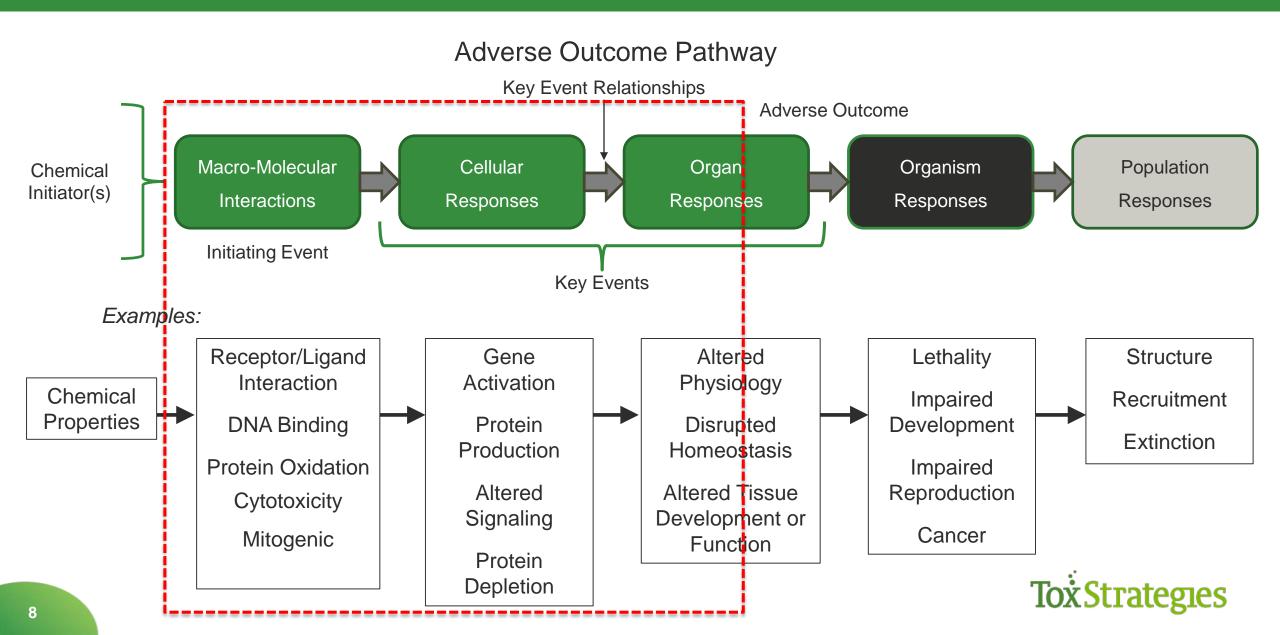
Reporting

• Comprehensive documentation of approach, findings, and conclusions in a public forum

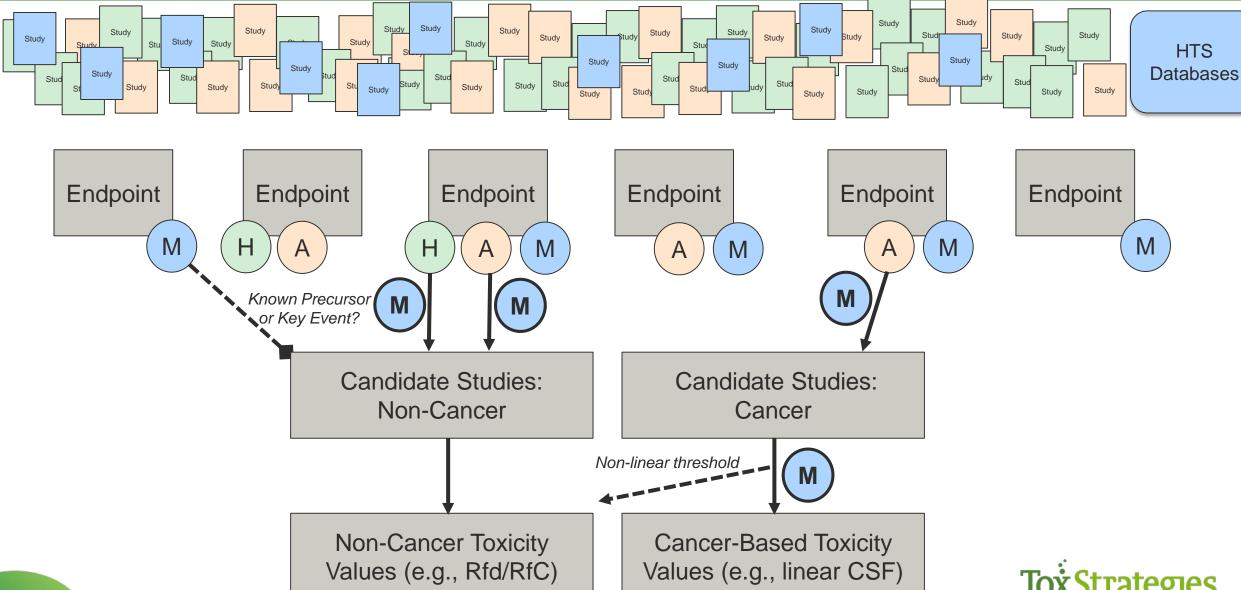
Problem Formulation Framework


Problem Formulation in Risk Assessment (Facilitated by Systematic Review)

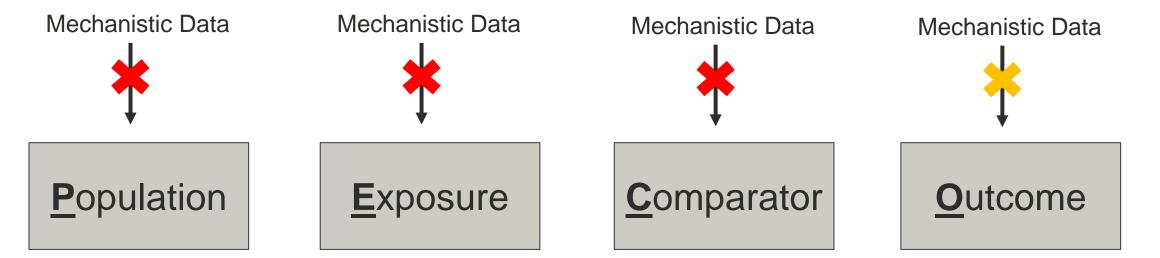
Scoping Human , Human Human , Develop Animal Problem Protocols for Identify Animal Evaluate Animal Integrate Formulation Systematic Evidence Studies Evidence Reviews Mechanistic Mechanistic. Systematic Reviews Broad Literature Search Dose-Response Uncertainty Assessment Hazard Identification Assessment and Derivation of Toxicity Values


Figure S-1. Systematic Review in the context of the USEPA IRIS process. Adapted from NRC (2014)

Problem formulation ultimately relates to the derivation of toxicity values



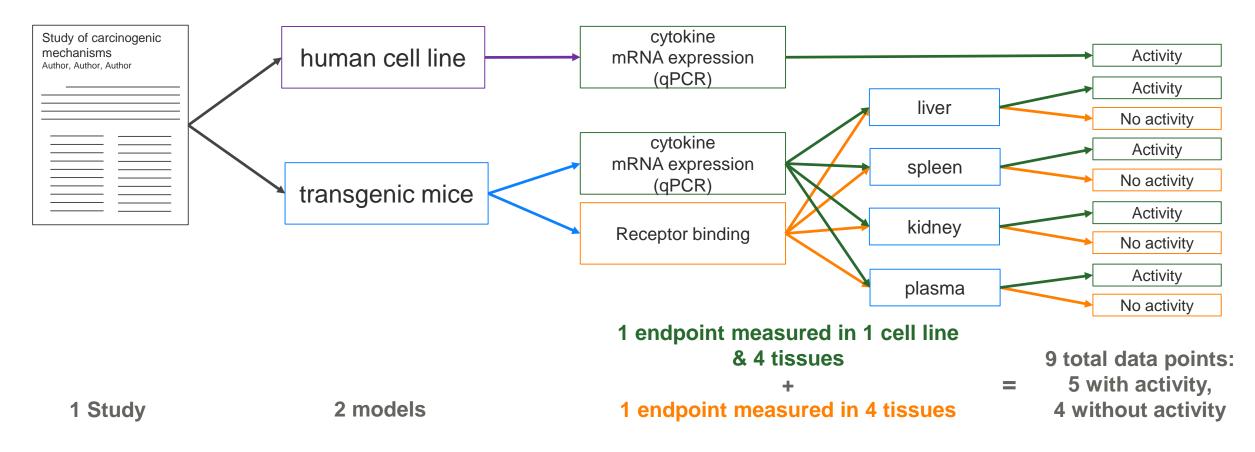
What is Mechanistic Data?



Use of Mechanistic Data in Risk Assessment

Mechanistic Data (Often) has Contextual Application to a Standard PECO

If it is assumed that the standard PECO involves the potential for an adverse effect (outcome) in humans...


Example: Characterize possible inter- or intraspecies differences

Example: Assess impact of dose relevance (i.e., exposure relevance) on key events or outcomes

Example: Characterize initiating or key events in a pathway leading to an adverse outcome (e.g., concordance, plausibility)

Mechanistic Data are Complex

Requires expertise, training, resources, established workflow, flexible tools, etc.

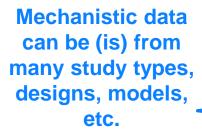
Difficult to plan a priori

Tox Strategies

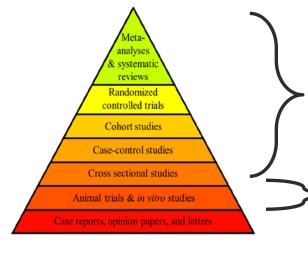
Evidence Identification Can be Challenging (which impacts problem formulation)

"Induces chronic inflammation"

Acute v. chronic? In vivo v. vitro?


"Modulates receptor-mediated effects"

Any receptor? Directionality?


Agent 1-1			Agent 1-2			Agent 1-3			Agent 1-4		
curated	built-in v1.2	built-in v1.21									
264	117	117	348	155	155	149	31	31	21	15	15
444	241	365	391	341	433	223	156	193	25	14	28
41	36	231	47	46	299	16	23	139	2	3	22
17	408	408	58	255	255	20	198	198	1	4	4
178	122	6169	74	51	262	191	160	804	3	2	18
329	10	40	113	12	33	135	10	26	7	0	0
247	208	597	94	83	205	144	80	268	5	1	6
99	12	69	179	36	161	72	16	64	1	0	0
85	2	2	173	25	25	104	5	5	2	0	0
.239	174	428	217	196	263	172	138	261	2	3	8
1359	1178	6390	973	1079	1097	837	667	1443	42	35	45

Best Practices Evolving for Systematic Review

Less "fit for purpose" in context of use or refining existing SR tools

Best Practices *Generally* Established for Human Data

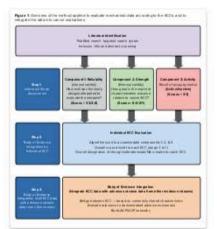
Best Practices Still In Development for Experimental Animal Data

Different questions (e.g., comparative effectiveness of an intervention vs characterization of hazard and risk)

- Need flexibility in application
- Need tools tailored to these types of evidence

Difficult to guide operationalization in the protocol

Challenges During Practice (and Solutions During Problem Formulation)


Example: Selection, Appraisal, and Integration for Specific Purpose

Systematic Evaluation and Integration of Data Relevant to Mechanisms of Carcinogenesis: Practical Experience in the Identification, Assessment, and Integration of Mechanistic Evidence in Human Health Assessments

G.A. Chappell, S.J. Borghoff, S.H. Fitch, C.L. Doepker, D. Wikoff

A females are port to absorber.

ackground

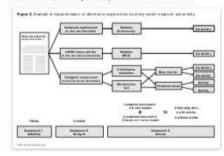
- Mechanistic data provide valuable information regarding characterization of carcinogenicity.
- The evaluation and integration of mechanistic data includes complexible is:

 Intercognisely of data types, collection, and reporting
 understanding the human relevance of endpoints measured in animal and/or cell-based models, or even in wide approaches.
- potentially large evidence base with many endpoints to integrate
 Wike/Fiet at J. (2018) recently published a framework which builds on the key characteristics of carcinogen (NCC) approach by quantitia tively integrating

mechanistic data in a reproductation manares using a termstal important in transmission of the installation of cardiocognic proportions, are and as desirable or of idea apparating the installation of idea apparating properties.

Objective

Apply a systematic approach for the identification, assessment, and integration of mechanistic evidence in human health assessments of carcinogenidity.


Methodology

Literature Identification

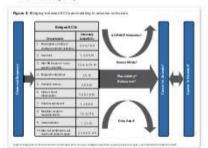
- The PubMed distables was searched using syntax that included the agent name(i) in a didition to terms reliating to the ten KCCs (Table 5.
 Titles and abstracts from all articles.
- Titles and abstracts from all of ticles, returned via the searches were acreemed using DatallerSR (Exidence Partners, Ottaws, Canada), and were either included or ecologic based on the following criteria (Table 2):

version accessed October 2017 for this study. Individual 5 tudy Assess ment (Step 1 of Frameworld)

- The full text of all included articles were reviewed, and mechanistic data were evaluated and scored for railability, strongth, and activity #igure t) per Wilcoff et al. (2016).
- Relability (i.e. study quality)
- Reliability was scored on a scale of 1 to 4 ()-reliable without restriction; 2 well ald a with restriction; 3 rest reliable; 4 rest assorable.
- · Strength
- This nerking represents the confidence in the predictive capability of the model to predict activity of the MCC in humans.
- The attempts of the model was accred is gleat for furnant in vivo studies (wither applicated according to appearing accreding the work of the work of the application of the application of the accreding to the accreding to
- * Activity
- For each endpoint, activity scores of 0 or 1 were assigned to indicate a ensporce relative to control or lack the reof respectively Figure 2;
- · Across all KCCs, callectively >150 endpoints were evaluated and scare d

Body of Evidence Integration: Individual KCCs (Step 2 of Framework)

 These elements were then quantitively stargated to provide a weighted score for each KCC, which facilitates the assessment of the body of evidence in the context of observed tumorigenic responses in animals and humans.


 The integrable occess for each KCC and their translated the caleoptical designations for ownerf activity of each KCC are related to the again. This designation is arrist to research that is used to inform the brain of an overall characterization occess of activity for the KCC (a), not occarringment potentially along with operating largement (which involves consideration of variables such as model does not obtained to a loaning the certain on their all.

Body of Evidence Integration — KCC Data and Other Evidence Streams (Step 3 of Framework)

· Bridging between KCCs (Figure 3)

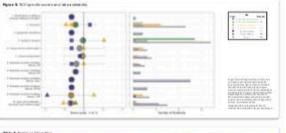
- The KCCs are recognized to occur as a set of (commonly linked) events and are, thus, completed in relation to each other (Smith et al., 2016).
- Anchoring to adverse culcome:
- NCC data are also then considered relative to any certangenic outcomes, observed in experimental estimate and humans, which allows by the mechanistic NCC to be evaluated in the confect of the biologic of plausitifity of a link with disserved or potential adverse outcomes (or long events) method for confect for contracting estimated to contract each of the product of the contraction of the contract of the contra

Results

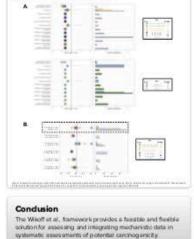

Cate graination of all attacles inturned via the nature sale acting via conducted based on review of the titles and obstacts, IRCC-relevant data were extracted and scare of from the literature sources, and data available in the TooCost (TooLit scenering programmes disc school and toopposted in the neview All sex haded data were then scared for releasible, wherepts and activity (see Figure 2).

Integration of evidence per KCC

- Overall, relarly all of the integrated scores for each KOC were indicative of a lack of activity, particularly when accounting for study reliability and strength of the model tested.
- When model types were evaluated individually, the integrated data for some specific model types demonstrated activity (e.g., non-trumer mammal er in vivo data for KOC #5; see Figure 5).
- Substantial varietion was observed in the number of endpoints our MCC.
- Strength of evidence for activity ranged from "no activity" to "week evidence of activity" across the KCOs.

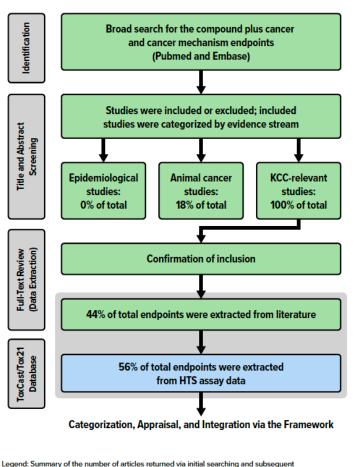

Integration of evidence for KCCs with other data streams

 When the KCC-related mechanistic data were integrated with other available data streams interest occurrer outcomes, the agent is unlikely to pose a caronogenic risk to humans (see Table 4).



Overall Findings

- The methodology, process, and insults of this assessment represent a case study of practic all expensions with the myderneritation of a systematic review of mechanistic evidence into turns health assessments.
- In addition to presenting how the KCC data can be systematically integrated with other exidence absorms, this cause study demands hat is that systematic ovaluation of mechanistic data may include substantial complicatly, and that compliant ovaluation of such data requires a clearly defined process secolate for a side of mild data galaxy lesses.
- Evaluation of mechanistic stature lated to the KCC, together with consideration of exidence from experimental arimal carcer studies, can be with after an existent firmited epidemiological data.
- The expertise of the screener impacts which studies will be included in the oxidence base and how such will be appraised.
- The Wilkoff et al., framework provides a feeable and fleeble solution for essenting and integrating mechanistic data in systematic assessments.
 Rapid incorporation of all data provides a quick overview of activity per
- Date visual actions are helpful in facilitating the evidence to decision process.
- Data source (e.g., Narohure vs. HTS data) may be expected yimportent for data good agents (Figure 6A)
- Using KCC sub-categories can provide additional information Figure 68:



Challenges in Identification, Selection, and Extraction of Mechanistic Data

Figure 4. Overview of literature searching and screening results + HTS data.

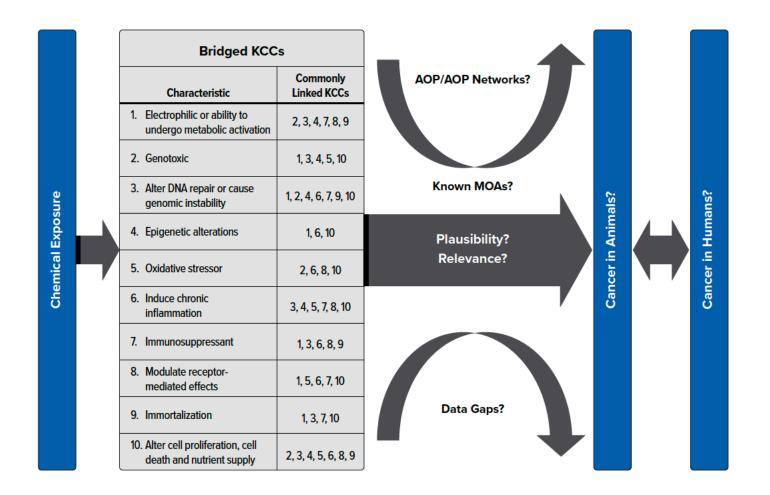
categorizations during title and abstract screening, and number of endpoints based on data extraction

during full text review.

Potential impact on problem formulation:

Are there "mapped" mechanisms or assays to the endpoint of interest?

Which types of data are relevant for inclusion?


What level of scoping, piloting, and refinement may be needed?

Do we have appropriate expertise?

Do we have appropriate tools to facilitate an accurate review?

Challenges with Integration

Potential impact on problem formulation:

Are integration approaches available?

Will the a-priori decisions provided for collection and evaluation of all necessary information?

What kind of experts will we need?

Example: Critical Appraisal of Mechanistic Data

ToxStrategies

Application of Mechanistic Data Quality Criteria in Assessment of the Relationship Between Congenital Heart Defects and TCE Exposure—A Case Study

Authors: Wikoff, D¹; Urban J²; Chappell G²; Haws, L²

Introduction

- Tools for evaluating the quality of mechanistic studies especially in vitro experiments — within the systematic review paradigm are not well established.

 Heterogenous study designs preclude simple adoption of existing tools and require development of new tools for appraising validity. One recently proposed tool is that from the USEPA-OPPT's 2018 Application of
- view (SR) in TSCA Risk Evaluations² (i.e., the TSCA study quality tool).
- The evidence base for trichloroethylene (TCE) and congenital heart defects (CHDs) in offspring presents an opportunity to explore study quality tools for mechanistic data Previously, a Risk of Diss (RoE) assessment was published on the human and animal and animal data suffered from high risk of bias; however, tools to evaluate the quality

Objective

To evaluate the utility of the TSCA study quality tool for mechanistic data using the TCE-CHD mechanistic evidence base as a case study.

Methods

Development of TCE-CHD Evidence Base (Literature Search):

- Using handwardning and reference chasing, mechanistic studies were identified from recent results conducted by Wkoff et al. (2018) were re-reviewed for identification of relevant mechanistic Herature. Additional PubMed and Embase searches were also conducted using the same search synta was conducted to capture relevant studies published since Wikoff et al. (2018). Searches were executed October 20, 2018.
- Any studies evaluating TCE exposure (in vivo or in vitro) relative to any mechanistic supect of biomolecular antitor physiological pathways of cardiac development were included.
- Studies were categorized based on the assay type(s); in vivo, in vitro (cell culture, in ovo, ex ovo, ex vivo

Selection of Screening Criteria

- . Primary Tool: TSCA study quality tools
- The TSCA study quality tool is comprised of 7 domains, defined by 25 metrics (in vitro; per Table G-16 of TSCA SR guidence) or 24 metrics (in vivo; per Table G-14 of TSCA SR guidence).
- Studies/experiments with any metrics scoring a "4" are characterized as "unacceptable" for falk assessment and excluded from further evaluation. For the remaining experiments, oweral quality was determined per the weighted accering calculations and calciportations based on Tables 6-18 (in stro)
- Secondary Tools: two additional book were selected for comparison purposes and applied to a subset
- ScRAP^I a scoring method developed for quantifying reporting and meth evaluations; the developers recommend using scores to nank study quality. Each evidence base is evaluated on a case-by-case basis, and no default score outsits are provided for characterizing overall quality. There are 2 evaluation criteria for each metric, none of which included a mechanic for excluding low quality studies from the evidence bear
- ToxRToxi (Toxicological data Reliability Assessment Tools developed to evaluate toxicology study quality based on the Klimbich reliability scoring system, in which toxicology studies are easigned to one of four scores for reliability. Only 2 evaluation criteria are considered for each metric ("0" or "1"; a

- · All quality assessments were carried out by two PhD scientists (GC, JU) with experience conducting and/or assessing in vivo and in vitro studies. In cases of conflict, a third scientist (DW) was consulted to
- Study quality evaluation was conducted at the experimental level; many studies reported multiple
- A pilot assessment was conducted in which the two analysts independently reviewed a subset of 10 in vito experiments. All decisions, interpretations, and refinements were documented. A similar pilot was
- conducted for mechanistic data reported in in vivo studies Based on findings of the pilot assessment, a tiered approach was used to assess in vito study quality.
- . Key Metrics Evaluation: The five Key Metrics were assessed; those studies that scored '4" on any of these metrics were removed from further study quality evaluation. Complete Study Quality Evaluation: Those studies that scored 1-2 on all of the Key Metrics were then
- further evaluated using all the quality metrics.
- A subset of the data were also subjected to quality evaluation using ScRAP and ToxRTool methods for

Figure 1. Summary of Study Quality Evaluation Process Developed for TCE-CHD Mechanistic Evidence Base

Expedite study quality evaluation only those TSCA metrics that of studies commonly "falled"

Apply full TSCA Metrics Set to those experiments into 1 of 4 study quality bins per TSCA guidance (high, medium, low,

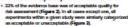
Key Learning from Pilot: Identification of metrics for which assays commonly "falled" streamline workflow in larger evidence base (i.e., start by looking at a subset of the criteria vs. all the criteria

Results

Mechanistic Evidence Base: 22 studies were identified that texted TCE in an experimental model designed to examine a mechanistic expect of cardiac development. These studies comprised a total of 68 unique

- assessment) in at least one Metric
- Rve TSCA study metrics that the pilot exp commonly accord "4'x" were identified as "Key Metrics" (Table

2). The fat of commonly failed metrics was used to expedite subsequent evaluations of the mechanistic evidence base by on these five Ivs. all 25 for each study



ment of Study Quality Across the Evid

- risk assessment (Figure 2). In all cases except one, all experiments within a given study were similarly catego as acceptable or unacceptable (Figure 2).
- assessment, all experiments were "acc appropriet following appropriet with all TSCA metrics Of the 24 experiments considered acceptable (no 41s), 14
- in witro models were of acceptable study quality for risk assessment. By contrast, a larger portion of the in ovo and
- mental models were accred to be of sufficient quality to be retained for further consideration in risk assessment (Figure 4).
- with reporting on the preparation and storage of the text substance (Metric S), some element of data graduals (Metric 22 and/or 23), and reporting on cytotoxicity (Metric 24, only relevant to call culture experiments) (Figure 5). More than 1/2

Comparison of Quality Using Secondary Tools:

- selected in vitro studies more consistently reflect the TSCA quality between the cell culture and/in ovo expe
- Two of the three tools (TSCA and ToxRTool) allowed for
- Comparison of findings to the output from ScRAP are less direct, requiring the analysis to interpret the output relative to the overall accress. Visual inspection generally shows concordance (e.g., more red in Study 19 vs. Study 2 across

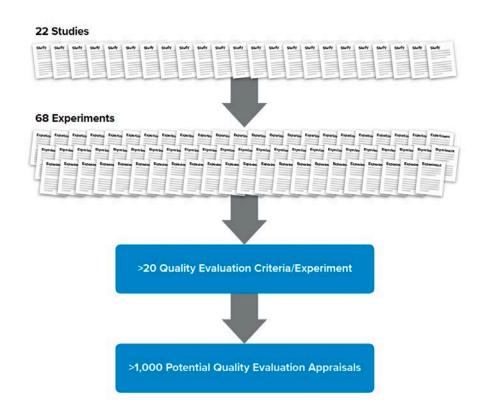
- acore in a Key Metric. Of those remaining after Key Metric
- scored as "high" quality and 10 scored as "medium" quality. No studies accred as "low quality."

· Across the three tools, the ToxRTool outcomes for the

- stant among all three approaches (Table 2).
- Comparison of the overall quality designations were similar with respect general categorization, though two of the three would have been designated in the lowest of all categories under TSCA relative to the second lowest in ToxRTool.

Overall Findings and Lessons

- The TSCA study quality metrics provide a relatively thorough method for assessing study quality in mechanistic studies. The metrics and metric accring provide a transparent mean of assessing quality as well as a tool to facilitate decisions.
- regarding reliance or inclusion of a study based on quality. The heterogeneity of mechanistic study designs provides significant challenges in context of a "one size fits all" quality evaluation approach. Particular challenge was met when using the animal toxicity study metrics for in vivo studies of
- Deskution of the quality of machanistic in vitro studies has
- many challenges related to implementation and workflow:
- . Difficult to achieve consistent evaluation output between reviewers inter- and intra- assessment.
- Plot exercises are critical to determine consensavisors on metric criteria refinement, interpretation, and application.
- The breadth and depth of evidence analyst expertise plays: critical role in making quality determinations across metrics.
- It is difficult to assess study quality without specific
- . The context of the research question is critical for establishing chemical-specific parameters and defining/ interpreting the study quality metrics and criteria used to
- The TSCA study quality metrics, as well as SciRAP and ToxRToxi, generally provide a measure of internal validity though have significant focus on reporting elements. These tools do not recaids confett measures of relevance as it relate to external or construct validity in a manner that is consistent with established considerations of such (e.g., mammalian


Condusions

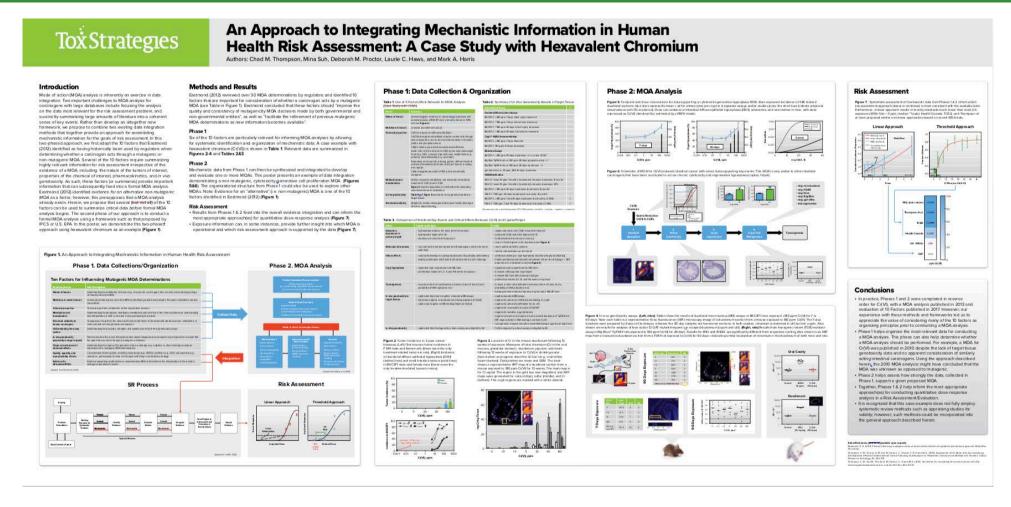
- The TSCA study quality metrics provide a relatively thorough method for assessing study quality in mechanistic studies as well as providing a transparent process for determining use of such data in the context of risk assessment. Topic-specific refinements and Sevelopment of operating procedures improved the utility of this tool.
- The retionale and utility of assessing study quality of mechanistic data should be addressed during problem. formulation and protocol development. The specific use formulation and protocol development. The specific use of mechanistic data in a risk assument is go, hazard identification, MoA evaluation) should be durified a prior as such context is important to deletemining the approach for assessing study quality as well as to exacting that resources are used to provide meaningful oxignat to inform risk assessment and meangement decisions. In the case of TCE-CHD, it is unlikely that evaluation of the mechanistic data would have changed the earlier risk of bias study conclusions related to development of toxicity values (i.e., CHDs are not a suitable endpoint upon which to have a marritative risk assessment for TCE).

Challenges in Identification, Selection, and Appraisal

Table 1_TCE_CHD Mechanistic Studies: Breakdown of Experiment Types						
Experiment Number of Experiments		Tools Used to Evaluate Quality of Experiments Relevant to Potential TCE-CHD Mechanism				
In vivo	5	USEPA OPPT TSCA Animal Toxicity Study Metrics (Table G-14)				
In vitro (cell culture)	26	USEPA OPPT TSCA In Vitro Toxicity Study Metrics (all 26); SciRAP Tool for Evaluating In Vitro Toxicity Studies (2 of 26); ECVAM ToxRTool for Assessing Reliability of In Vitro Toxicity Studies (2 of 26)				
In vitro (in ovo)	21	USEPA OPPT TSCA In Vitro Toxicity Study Metrics (all 21); SciRAP Tool for Evaluating In Vitro Toxicity Studies (1 of 21); ECVAM ToxRTool for Assessing Reliability of In Vitro Toxicity Studies (1 of 21)				
In vitro (ex ovo)	3	USEPA OPPT TSCA In Vitro Toxicity Study Metrics (all 3)				
In vitro (ex vivo)	12	USEPA OPPT TSCA In Vitro Toxicity Study Metrics (all 12)				
Unknown model	1	USEPA OPPT TSCA In Vitro Toxicity Study Metrics (1)				
TotaL	68	-				

Potential impact on problem formulation:

How do we identify which data are relevant to the endpoint? Or to risk assessment? Do we have the time or resources to conduct a given level of appraisal? Do we have the expertise?

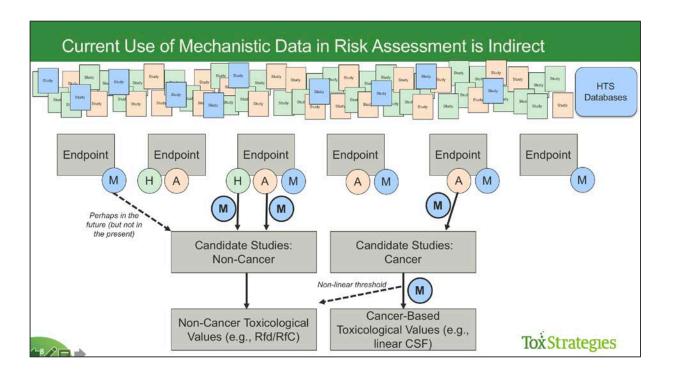

Challenges in Critical Appraisal

Stude	5 Madela	Study Quality Evaluation Outcomes						
Study number	Experiment Model & Endpoint	TSCA	ToxRTool	SciRAP				
2	In ovo: Level of apoptosis in atrioventricular cushion and outflow tract sections of HH24 staged chick embryo hearts	 Score: 1.3 Interpretation: High Quality Study Consequence: Retain in TCE-CHD evidence base for risk assessment 	 Score: 17 (No "Red" zeros) Interpretation: Reliable w/o restrictions (k1) Consequence: Useful; check relevance for intended purpose 	Reporting Quality Score: 78 out of 100 Methodological Quality Score: 85 out of 100 Consequence: None defined Profits Carly - Study 2				
14	In vitro: Protein activity in transformed human liver cell line	 Score: Not calculated; multiple metrics scored =4 Interpretation: Unacceptable for risk assessment Consequence: Remove from evidence base for TCE-CHD risk assessment 	 Score: 12 (1 "Red" zero) Interpretation: Not reliable (k3) Consequence: Generally not to be used as a key study; may be useful in WoE approach or as supportive information 	Reporting Quality Score: 50 out of 100 Methodological Quality Score: 50 out of 100 Consequence: None defined Playing Quality - Study 14 Playing Quality - Study 14				
19	In vitro: Gene transcription levels in transformed rat heart cell line	 Score: Not calculated; multiple metrics scored =4 Interpretation: Unacceptable for risk assessment Consequence: Remove from evidence base for TCE-CHD risk assessment 	 Score: 12 (2 "Red" zeros) Interpretation: Not reliable (k3) Consequence: Generally not to be used as a key study; may be useful in WoE approach or as supportive information 	Reporting Quality Score: 43 out of 100 Methodological Quality Score: 46 out of 100 Consequence: None defined Output Out				

Potential impacts on problem formulation:

What will we do with the appraisal output? How will we consider "quality" of mechanistic in the risk assessment? How will appraisal compliment relevance?

Example: Structured Evaluation of Mechanistic Data in MoA to Support Risk Assessment


Potential impact on problem formulation:

What existing frameworks exist to help structure the evaluation? How will mechanistic data be used in risk assessment?

Tox Strategies

Conclusions and Recommendations For Problem Formulation

Intent for Mechanistic Data Must be Understood and Very Well-Defined

- Identify potential hazard?
- Characterize potential hazard?
- Characterize MoA to inform dose-response methods or selection of key events, etc.?

How will it be determined which mechanistic data are relevant? Important? Necessary? Appraised? Integrated?

Conclusions From Practice

- Complexity is often difficult to fully accommodate a priori
 - Considerations of systematic mapping or iterative determination for systematic review of mechanistic data may be important
- Use (and volume) of mechanistic data are likely to determine most suitable approaches for selection and critical appraisal
 - Considerations for aspects not covered by internal validity (e.g., relevance)
- Rely on existing guidance/frameworks where possible
- Appreciate the role of staff training, piloting, and subject matter expertise

Overall Recommendations

Recognize the iterative process associated with development of best practice S

"We are looking for rigor, not rigidity." - Dr. Gary Miller

Tox Strategies

Thank you!

Grace Chappell, Chad Thompson, Jon Urban, Susan Borghoff, Julia Rager, Seneca Fitch, Mark Harris, Laurie Haws