

The National Academies of Sciences, Engineering, and Medicine
Strategies and Tools for Conducting Systematic Reviews of Mechanistic Data to Support Chemical Assessments
Lecture Room, NAS Building, Washington, DC, USA, 10-11 December 2018

In vitro method development safeguarding scientific integrity and quality

Trusted by decision makers Used by industry

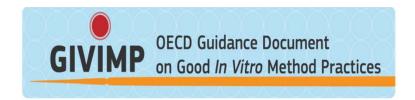
Need approaches and tools to respond to a more general "reproducibility crisis" or "replication crisis" of scientific results ++ stimulate a "credibility revolution"

https://plato.stanford.edu/entries/scientific-reproducibility/ First published Mon Dec 3, 2018

OECD Guidance Document on Good *In Vitro* Method Practices

FOR THE DEVELOPMENT AND IMPLEMENTATION OF IN VITRO METHODS FOR REGULATORY USE IN HUMAN SAFETY ASSESSMENT

GIVIMP is method centred but includes aspects of good practices in reporting of mechanistic data, critical to their credibility If GIVIMP is properly implemented, this tool will increase confidence in the reliability and integrity of the generated data


GIVIP OECD Guidance Document on Good *In Vitro* Method Practices

It strives to implement good practices early in the in vitro method development process

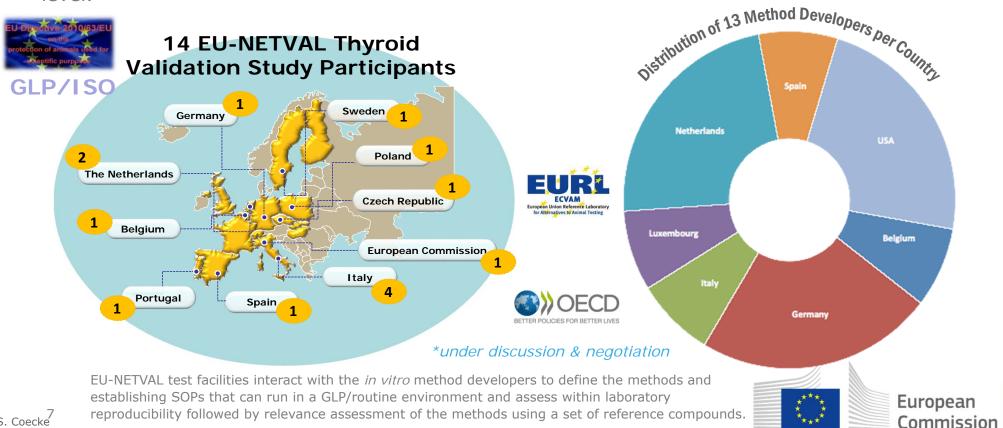
Applying the principles described in GIVIMP during the development of in vitro methods will help improve the quality and reliability of methods that are needed to support safety decisions.

Tool to improve the efficiency of the whole process from development to final use.

August 2018...Support method developers and end-users working in academic, industry or government laboratories across all 36 OECD member countries and beyond in *harmonisation efforts* of *in vitro* methods.

The development of GIVIMP was coordinated by the European Commission Joint Research Centre's EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) within the context of a project of the OECD Test Guidelines Programme

The GIVIMP GD is divided into 10 sections covering:


- 1. Roles and responsibilities
- 2. Quality considerations
- 3. Facilities
- 4. Apparatus, material and reagents
- 5. Test systems
- 6. Test and reference/control items
- 7. Standard operating procedures (SOPs)
- 8. Performance of the method
- 9. Reporting of results
- 10. Storage and retention of records and materials

EURL ECVAM is coordinating a large scale validation study of a set of mechanistically informative alternative methods to detect chemicals that disrupt normal thyroid hormone function, in collaboration with 14 of the 37 European Union Network of Laboratories for the Validation of Alternative Methods (EU-NETVAL) and the method developers for delivering at OECD level.

S. Coecke

GUIDANCE

ADOPTED (ECHA): 5 June 2018 ADOPTED (EFSA): 5 June 2018 doi: 10.2903/i.efsa.2018.5311

Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009

European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC)

Niklas Andersson, Maria Arena, Domenica Auteri, Stefania Barmaz, Elise Grignard, Aude Kienzler, Peter Lepper, Alfonso Maria Lostia, Sharon Munn, Juan Manuel Parra Morte, Francesca Pellizzato, Jose Tarazona, Andrea Terron and Sander Van der Linden

Abstract

This Guidance describes how to perform hazard identification for endocrine-disrupting properties by following the scientific criteria which are outlined in Commission Delegated Regulation (EU) 2017/2100 and Commission Regulation (EU) 2018/605 for biocidal products and plant protection products, respectively.

© 2018 European Chemicals Agency and © European Food Safety Authority.

Keywords: biocidal product, plant protection product, endocrine disruptor, guidance, hazard

Requestor: European Commission

Question numbers: EFSA-Q-2016-00825, ECHA-18-G-01-EN

Correspondence: For biological products: biocides@echa.europa.eu

For plant protection products: pesticides.peerreview@efsa.europa.eu

Document aims to assist users in complying with their obligations under the Biocidal Products Regulation (BPR) or the Plant Protection Products Regulation (PPPR).

Appendix A – Additional considerations on how to assess the potential for thyroid disruption for human health

- Comparative studies of enzyme activity induced by the test substance in liver in vitro systems should be measured in both the relevant test species (e.g. rat, mouse and dog) and humans. The metabolism of the specific substance (ADME properties) in both test species and humans, and the activity of possible metabolites must be considered when this comparison is conducted.
- 3. The presence of other possible thyroid-disrupting modes of action such as interference with TH synthesis should also be excluded, e.g. by evaluating in vitro the potential for inhibition of the sodium-iodide symporter (NIS) (Cianchetta et al., 2010; Hallinger et al., 2010; Kogai et al., 2012) and thyroid peroxidase (TPO) (Kambe et al., 1997; Paul et al., 2014; Paul Friedman et al., 2016; Wu et al., 2016). It must however be acknowledged that substances may interfere with the thyroid hormone system through many different mechanisms of action, and that currently validated/standardized in vitro assays do not exist to investigate all these different pathways and a reasonable effort is anticipated, based on available tools and current understanding of thyroid physiology.

An example of a postulated mode of action is reported below:

The assessment of qualitative/quantitative differences in hepatic induction can therefore be part of the WoE and used to provide evidence of non-human relevance.

A total of 17 methods have been identified as candidates by EURL ECVAM taking primarily into account the information reported in an OECD scoping document on *in vitro* and *ex vivo* methods for the identification of modulators of thyroid hormone signalling (OECD No. 207), but also an OECD Detailed Review Paper (OECD No. 178), and feedback received at various Expert Group meetings.

- 1a. CHO-K1 cells thyrotropinreleasing hormone (TRH) receptor activation (betagalactosidase) measuring agonist and antagonist activities
- 1b. CHO-K1 cells thyrotropinstimulating hormone (TSH) receptor activation based on cAMP measurement

2. Thyroid Hormone (TH) synthesis

- 2a. Thyroperoxidase (TPO)
 inhibition based on oxidation
 of Amplex UltraRed
- **2b.** Thyroperoxidase (TPO) inhibition based on oxidation of Luminol
- **2c.** Tyrosine iodination using liquid chromatography
- 2d. Activation of the sodium iodide symporter (NIS) based on Sandell-Kolthoff reaction

3. Secretion and transport in serum

- 3a. Thyroxine-binding prealbumin (TTR) / thyroxine-binding globulin (TBG) using fluorescence displacement (ANSA)
- **3b**. Thyroxine-binding prealbumin (TTR) using fluorescence displacement (T4-FITC)

4.
Metabolism
and excretion

- **4a**. Deiodinase 1 activity based on Sandell-Kolthoff reaction
- **4b.** Glucuronidation of thyroid hormones (THs) using liquid chromatography/mass spectrometry (LC/MS)
- **4c**. Inhibition of thyroid hormones (THs) sulfation using liquid chromatography

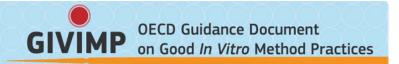
5a. Inhibition of monocarboxylate transporter 8 (MCT8) based on Sandell-Kolthoff reaction

- 6. Cellular responses
- **6a.** Human thyroid hormone receptor alpha (TRα) and Human thyroid hormone receptor beta (TRβ) reporter gene transactivation measuring agonist and antagonist activities
- 6b. CALUX human thyroid hormone receptor beta (TRβ) reporter gene transactivation measuring agonist and antagonist activities

7a. Measurement of intrafollicular thyroxine (T4) using zebrafish eleutheroembryos

- 8.
 Integrative
 cellular *in vitro*methods
- 8a. Measurement of proliferation of rat pituitary-derived cell line GH3
- 8b. Proliferation, migration and oligodendrocyte differentiation of human neural progenitor cells

PART 1: Definition of the in vitro method


- ✓ produce the related set of SOPs
- ✓ Further development of the method if so needed
- √ assessing robustness and reliability
- Few chemicals: Reference and controls
- Experimental study of 5 valid runs ...data to assess within laboratory reproducibility

PART 2: Relevance

- Will start only when the Definition has proven to be successful
- Overall relevance, based on the underlying mechanisms, of the selected in vitro methods: a set of chemicals (max. 30) for all methods
- ✓ Experimental study of 3 valid runs per test items

1. Roles and responsibilities

- ▶ Describes roles and responsibilities of key actors in the *in vitro* method life cycle
- ► Targets method developers, test system providers, validation bodies, intergovernmental organisations, suppliers, users, and sponsors
 - ▶ Provides guidance on documentation requirements (e.g. origins of cells and tissues, identity of the test system)

1.1 *In vitro* method developers

- Sign declaration; inform on IPR
- Declare GM elements
- Provide input to first draft of the outline protocol
- Provide input for choice of reference and control items

1.2 Test system providers

- Sign Material Transfer Agreement, IPR
- Declare GM elements

1.3. Validation bodies (EC JRC EURL ECVAM)

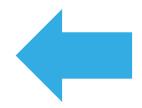
- Overall coordination (incl. all legal agreements...35)
- Provision test systems (characterisation and Qc), compounds, outline protocols

1.5 Suppliers of equipment, materials and reagents

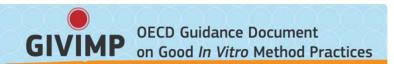
2.4 Quality control of test systems

2.5 Quality control of

consumables and reagents

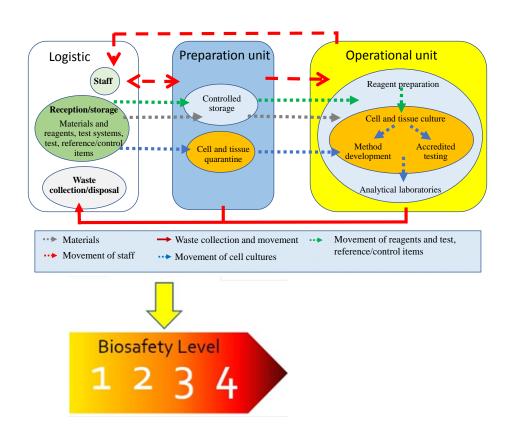

2. Quality considerations

- ► Discusses quality assurance versus quality control
- ► Examines quality risk-based assessment and quality control requirements for development and implementation of *in vitro* methods
- ► Provides quality considerations regarding the integrity of the data



Attributes	Original Source	Early Stocks	Cell Banks	Routine Cultures
Morphology	✓	✓	✓	✓
Viability	✓	✓	✓	√ ²
Identity	✓	✓	✓	
Doubling time b	✓	✓	✓	✓
Mycoplasma	✓	✓	✓	✓
Viruses	✓ (donor only)		✓ (master bank only)	
Bacteria and Fungi			✓	√ °
Function/phenotype		✓	✓	√ d
Genetic stability			✓	✓°
Absence of reprogramming vectors (iPSC f lines)		✓	~	

Applicability of integrity checks on cell cultures



3. Facilities

- ► Recommends fit for purpose facilities and a detailed understanding of the work flow
- ► Indicates that facility design and safety risk assessment and management should be adequate
- ► Prescribes strategies to avoid crosscontamination

4. Apparatus, materials and reagents

- ► Highlights the importance of regular maintenance, calibration, and validation
- ► Instructs on sourcing of materials and reagents (e.g. from well-established suppliers) to ensure the integrity and reliability
- ➤ Discusses the use of media in cell culture, including alternatives to animal-sourced serum

Antibiotics

...may arrest or disrupt fundamental aspects of cell biology, and, while they are effective against prokaryotic cells (i.e. bacteria), they can causing toxic effects in mammalian cells.

Foetal calf serum

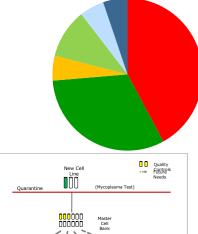
Consensus Report ALTEX. 2018;35(1):99-118

Fetal Bovine Serum (FBS): Past - Present - Future

Jan van der Valk¹, Karen Bieback², Christiane Buta³, Brett Cochrane⁴, Wilhelm G. Dirks⁵, Jianan Fu⁶, James J. Hickman⁷, Christiane Hohensee⁸, Roman Kolar⁹, Manfred Liebsch¹⁰, Francesca Pistollato¹¹, Markus Schulz¹², Daniel Thieme¹³, Tilo Weber⁹, Joachim Wiest¹⁴, Stefan Winkler¹⁵ and Gerhard Gstraunthaler¹⁶

- The use of serum has been discouraged: the undefined nature of the medium
- batch variability
- potential limitation
- availability of supply.

https://fcs-free.org/



5. Test systems

- ► Elaborates the importance of Good Cell Culture Practice (GCCP)
- ► Advises the setting of acceptance criteria already at the development stage
- ► Describes identification and characterisation, sourcing, cell-banking and cryopreservation
- ► Suggests good practices for contaminants screening, including sterility, mycoplasma, virus testing

- ■8 animal cell lines (5 with human inserts)
- 6 human cell lines
- ■1 human primary cells
- 2 proteins
- 1 cellular fraction
- ■1 whole organism

*under discussion & negotiation

Methodologies testing Test system acceptance criteria

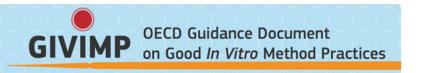
Annex

Guidance on Good Cell Culture Practice

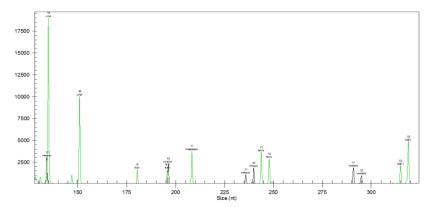
A Report of the Second ECVAM Task Force on Good Cell Culture **Practice**

David Pamies ¹, Anna Bal-Price ², Anton Simeonov ³, Danilo Tagle ³, Dave Allen ⁴, David Gerhold ³, Debono Yin ³, Francesca Pistollato ³, Takashi Inutsuka ⁴, Kristie Sullivan ³, Ghn Stacey ⁵. Harry Salem 9, Marcel Leist 10, Mardas Daneshian 10, Mohan C. Vemuri 11, Richard McFarland 12,

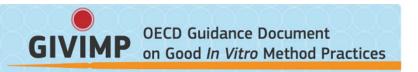
Sandra Coecke¹, Suzanne C. Fitzpatrick¹², Uma Lakshmipathy¹¹, Amanda Mack¹³, Wen Bo Wang ¹³, Daiju Yamazaki¹⁴, Yuko Sekino ¹⁴, Yasunari Kanda ¹⁴, Lena Smirnova ¹



Sandra Coecke, 1 Michael Balls, 2 Gerard Bowe, 1 John Davis, 3 Gerhard Gstraunthaler, 4 Thomas Hartung, 1 Robert Hay, 5 Otto-Wilhelm Merten, 6 Anna Price, 1 Leonard Schechtman, 7 Glyn


European Commission

Cell line identity & purity


Authentication of human cell lines with DNA profiling using 8 different and highly polymorphic short tandem repeat (STR) loci.

Human samples also tested for presence of mitochondrial DNA sequences from rodent cells as mouse, rat, Chinese and Syrian hamster. At a detection limit of $1:10^5$ mitochondrial sequences from mouse, rat or Chinese and Syrian hamster cells were not detected in the samples.

Identification of animal species with DNA Barcoding of Cytochrome Oxidase subunit 1.

Example of results; STR profile of a human cell line (left) and DNA sequence of an animal cell line (right)

Sterility

- Culturing without antibiotics + microscopic detection of bacteria, fungi, yeast
- Mycoplasma test (PCR and broth agar)
- Presence of human pathogenic viruses (PCR)

100 bp ladder
Internal control
Positive control
Pos. control + int. control
Water control

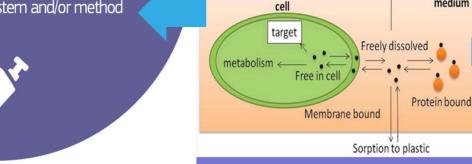
The following viruses are checked in rodent cell lines

Retroviruses (with RT-PCR and ELISA)

The following viruses are checked in human cell lines

- Human Immunodeficiency Virus types 1 and 2
- Hepatitis B and C Viruses
- Human Papilloma Virus
- Xenotropic murine leukemia virus

Example of results; Mycoplasma PCR (left) and microscope image (right)

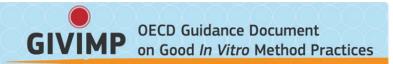

	sample	parental/ reference line	comment/match
1b	CHO-R, JP09	Puck et al, 1958	COI Barcoding analysis revealed Cricetulus barabensis species, species-specific
5a	MDCK1-MCT8	Gaush et al., 1966	COI Barcoding analysis revealed Canis lupus species, species-specific
5a	MDCK1-pcDNA	Gaush et al., 1966	COI Barcoding analysis revealed Canis lupus species, species-specific
6b	TRβ-CALUX	U-2-OS (DSMZ ACC 785)	full-matching STR profile of cell line U-2-OS in the reference database, authentic

6. Test and reference/control items

- ► Illustrates the preparation and characterisation of test, reference and control items
- ▶ Defines the applicability and limitations of the method
- ▶ Recommends to identify potential sources of interference with the test system and/or method endpoint

Comparison between solubility determination methods

Method	Limitations	Specificity	Cut off	Rapidity
Nephelometry (Light scatter)	Sticky precipitates Impurities	Low	No	High
UV/VIS 1 (Absorbance)	Compound must have chromophore Sticky precipitates Impurities	Low	<500 nm	High
UV/VIS 1* (Filtration Absorbance)	Compound must have chromophore Sticky precipitates Impurities Loss due to filter absorption	Medium	<250 nm	Medium
HPLC-UV*^	Sticky precipitates	High	No	Low
LC-MS*^	Sticky precipitates	High	No	Low


Evaporation

medium

Test and reference/control 6. items

- 6.1 Reference and control items
- **6.3Test item preparation**
- **6.4 Concentration range**
- 6.5 Solubility
- 6.6Stability
- 6.7 Solvents

7. Standard operating procedures

- ▶ Provides guidance on the development and preparation of in vitro method standard operating procedures (SOPs) to ensure consistency and reproducibility of data acquired
- Describes the evolution of a SOP from initial method description to method optimisation and validation

Thyroid Validation Study

Evolution of a Standard Operating Procedure (SOP)

No SOP

Limited reproducibility (operator dependant)

Method optimisation

Describe the in vitro method procedure

Method optimised

Historical data of reference items are generated in a controlled way

SOP Version 01

Advanced in vitro method description

Acceptance criteria for valid/invalid experiments

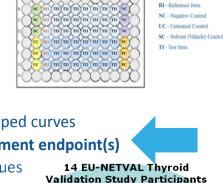
Lists of needed equipment, reagents, consumables and reference items

Calculation of results

SOP Version xx

Further optimised procedure
Acceptance criteria for valid/invalid experiments
Calculation of results for test items
Data recording Forms, Data Calculation forms
SOP is robust

8. Performance of the method


- ► Analyses development of acceptance criteria for components (e.g..positive and negative controls)
- ► Reviews the elements of experimental design such as plate layout, the number of replicates, outlier detectin, data analysis
 - Examines how to determine the performance of the method, including the assessment of linearity, range, accuracy

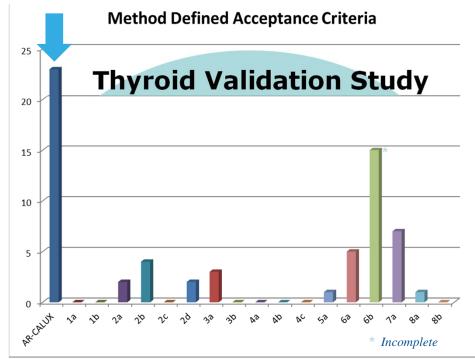
Performance of the method

8.1	Acceptance criteria	
8.2	Experimental design	

- 8.2.1 Plate layout
- 8.2.2 Data analysis
- 8.2.3 Outlier detection and removal
- 8.2.4 Non-monotonic dose and U-shaped curves
- 8.3 In-house validation of the measurement endpoint(s)
 - 8.3.1 Detection Limits and Cut-off values
 - 8.3.2 Linearity and dynamic range
 - 8.3.3 Accuracy and precision
 - 8.3.4 Sensitivity and specificity
 - 8.3.5 Repeatability
- 8.4 Proficiency chemicals
- 8.5 Data-intensive in vitro methods

The Netherlands

1 Belgium

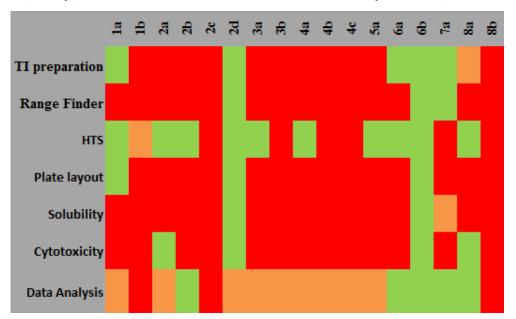

Czech Renubl

1st EU-NETVAL validation study AR-CALUX Method: QC parameters

Towards a Test Guideline for Better POLICIES FOR BETTER LIVES

Androgen Receptor Transactivation Assays (ARTA)

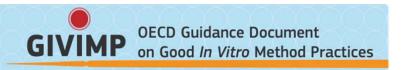
Target: WNT review June 2019 / adoption April 2020




- Thawing -> 75% confluence after 72 +/- 4 hours of incubation
- Passage number > 2 and < 30
- Freedom of contamination
- Incubation time: 16 to 32 hours
- 50% and 90% confluent in all the wells
- Test Items must be soluble by visual inspection
- EC50 range reference item DHT (1 × E-10 –1 × E-9 M)
- CV of estimated log (EC50) reference item < 1.5%
- Relative induction (%) PC 17a-Methyltestosterone > 30%
- Relative induction (%) NC Corticosterone < 10%
- Minimum fold induction of the highest RI conc. > 20
- Z-factor for DHT data > 0.5
- Maximum 2 concentrations may be excluded from RI curve
- Reference curve 6/8 concentrations acceptable (conditions)
- Max 2 concentrations may be excluded from test item series
- Lowest test item concentration should be at solvent control level
- IC50 range reference item 1×10-7 1×10-6 M
- CV of estimated log(IC50) reference item Flutamide < 3%
- Relative induction (%) PC < 60 %
- Relative induction (%) NC > 85 %
- Minimum fold inhibition of the highest RI concentration (C8) > 10
- Z-factor for Flutamide data > 0.5
 - Minimum six valid triplicate samples

EUR'L

Initial assessment of method procedures (Completeness based on EURL ECVAM's experience)


Once the development and optimisation of the method in the developers' laboratory has been finalised it is recommended to perform an in-house validation of the method prior to routine use.

In vitro method development and in-house validation should be considered as continuous and inter-dependent.

Major required elements to subject to in-house validation:

- 1. Aspects of test system
- 2. and *in vitro* method details

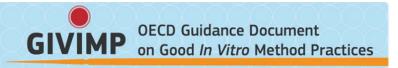
9. Reporting of results

- Gives guidance on reporting of data for regulatory purposes including the OECD Mutual Acceptance of Data (MAD)
- Recommends publishing of scientific data to promote more transparency and openness
 - ► Reporting of method validation is also discussed

Data sharing in public repositories is encouraged

European

Commission


Publication of method procedures in online repositories

Major required elements to be reported:

- 1. Aspects of test system
- 2. and *in vitro* method details

Transparency

The Transparency and Openness Promotion (TOP) guidelines https://osf.io/ud578/
The Journal of Negative Results in BioMedicine https://jnrbm.biomedcentral.com/
Etc.

10. Storage and retention of records and materials

- ▶ Discusses requirements relating to the storage and retention of data, records and materials
- ► Claims the application of data integrity to both paperbased and electronic systems
- Prescribes protection of data, records and materials from deliberate or accidental changes, manipulations or deletions

Data sharing

- Public repositories guarantee data integrity and access
- Electronic data format critical for future retrieval

Major required elements to be reported:

1. Aspects of test system

2. and *in vitro* method details allowing QC

ATLA 33, 261-287, 2005

REFERENCE 02 from EURL ECVAM

Guidance on Good Cell Culture Practice

A Report of the Second ECVAM Task Force on Good Cell Culture Practice

Sandra Coecke, ¹ Michael Balls, ² Gerard Bowe, ¹ John Davis, ³ Gerhard Gstraunthaler, ⁴ Thomas Hartung, ¹ Robert Hay, ⁵ Otto-Wilhelm Merten, ⁶ Anna Price, ¹ Leonard Schechtman, ⁷ Glyn Stacev ⁸ and William Stokes ⁹

Table 5: Details to be included in papers for publication in journals, using an example of primary/early passage human cell culture

	Details	Supplier details
Type of culture	Primary cell culture	na
Cell/tissue type	Keratinocyte	na
Species	Human	na
Origin	Foreskin	QMC Hospital Trust, Nottingham, UK
Ethical permission	Required	Ethics Committee, QMC Hospital Trust
Supply to other users	Not permitted	
Transport solution	Phosphate-buffered saline	Gibco, Paisley, Scotland
Basic culture medium	Epi-Life® Medium	Cascade Biologics, Mansfield, Notts., UK
Serum	None	na
Antibiotics	$100 U/ml$ penicillin, $100 \mu g/ml$ streptomycin	Gibco
Other additives	HKGS Kit (5-001 5)	Cascade Biologics
	Calcium chloride	In-house
Complete medium	No further comment	na
	Every 2 days and at subculture	na
Culture flasks for	24cm ² tissue culture flasks (163371)	Nunclon, Roskilde, Denmark, or Scientific
establishing cultures		Laboratory Supplies, Nottingham, UK
Inserts	Not used	na
Surface coating	Not used	na
Subculture	When 50–80% confluent (not when	na
	100% confluent)	
Subculture split ratio	1:5 or 1:10	na
Detachment solution	0.25% trypsin/EDTA (R-001-100) with	Cambrex Bio Science, Wokingham,
	trypsin-neutralising solution (R002-100)	Berkshire, UK
Usable passage range	1-4	na
Maintenance conditions	37°C, 5% CO ₂ in air	na
Storage conditions	Stock cells in liquid nitrogen, in 90% fetal	na
	calf serum/10% DMSO	
Passage number at use	3	na
Culture plates for use	96-well plates (167008)	Nunclon
Use	3T3-NRU phototoxicity test	na
	oro titto photocoaletty test	444
Relevant Standard Operating	OECD TG 427, EU B.29	na
Procedures/guidelines	** **	
References	14, 15	na
Further comments	None	na

 $na = not \ applicable.$

1st EU-NETVAL validation study AR-CALUX Method: QC parameters

Towards a Test Guideline for BETTER POLICIES FOR BETTER LIVES

Androgen Receptor Transactivation Assays (ARTA)

Target: WNT review June 2019 / adoption April 2020

Major required elements to be reported:

- 1. Aspects of test system
- 2. and *in vitro* method details

 It might beneficial to report some of these

 criteria...

- Passage number > 2 and < 30
- Freedom of contamination
- Incubation time: 16 to 32 hours
- 50% and 90% confluent in all the wells
- Test Items must be soluble by visual inspection
- EC50 range reference item DHT (1×E-10 -1×E-9 M)
- CV of estimated log (EC50) reference item < 1.5%
- Relative induction (%) PC 17a-Methyltestosterone > 30%
- Relative induction (%) NC Corticosterone < 10%
- Minimum fold induction of the highest RI conc. > 20
- Z-factor for DHT data > 0.5
- Maximum 2 concentrations may be excluded from RI curve
- Reference curve 6/8 concentrations acceptable (conditions)
- Max 2 concentrations may be excluded from test item series
- Lowest test item concentration should be at solvent control level
- IC50 range reference item 1×10-7 1×10-6 M
- CV of estimated log(IC50) reference item Flutamide < 3%
- Relative induction (%) PC < 60 %
- Relative induction (%) NC > 85 %
- Minimum fold inhibition of the highest RI concentration (C8) > 10
- Z-factor for Flutamide data > 0.5
- Minimum six valid triplicate samples

Major required elements to be reported for mechanistic methods and the related study results

- 1. Aspects of test system
- 2. and *in vitro* method details

Thyroid Validation Study

4.
Metabolism
and excretion

- **4a.** Deiodinase 1 activity based on Sandell-Kolthoff reaction
- 4b. Glucuronidation of thyroid hormones (THs) using liquid chromatography/mass spectrometry (LC/MS)
- **4c.** Inhibition of thyroid hormones (THs) sulfation using liquid chromatography

Appendix A – Additional considerations on how to assess the potential for thyroid disruption for human health

- Comparative studies of enzyme activity induced by the test substance in liver in vitro systems should be measured in both the relevant test species (e.g. rat, mouse and dog) and humans. The metabolism of the specific substance (ADME properties) in both test species and humans, and the activity of possible metabolites must be considered when this comparison is conducted.
- 3. The presence of other possible thyroid-disrupting modes of action such as interference with TH synthesis should also be excluded, e.g. by evaluating in vitro the potential for inhibition of the sodium-iodide symporter (NIS) (Cianchetta et al., 2010; Hallinger et al., 2010; Kogai et al., 2012) and thyroid peroxidase (TPO) (Kambe et al., 1997; Paul et al., 2014; Paul Friedman et al., 2016; Wu et al., 2016). It must however be acknowledged that substances may interfere with the thyroid hormone system through many different mechanisms of action, and that currently validated/standardized in vitro assays do not exist to investigate all these different pathways and a reasonable effort is anticipated, based on available tools and current understanding of thyroid physiology.

An example of a postulated mode of action is reported below:

The assessment of qualitative/quantitative differences in hepatic induction can therefore be part of the WoE and used to provide evidence of non-human relevance.

9. Reporting of results
galance or recording of data for yourpoon relating the OECD MAURAI even of Data MAIN in the result of the MAIN in the result of the MAIN is not being as you of the most being as you of the result being as you of the results of medical walkdaton is office.com

.....and the age of liver perfusions and metabolism

cooking pots in the

experimental design

Human liver perfusion, Marseille, April 1992

In vitro metabolism (CYP) induction method ring trial validation study using cryo pHH (3 labs) and cryoHepaRG (3 labs) incl. aspects of harmonisation

MiniReview

Basic & Clinical Pharmacology & Toxicology, 2018, 123, 42-50

Cytochrome P450 Induction and Xeno-Sensing Receptors
Pregnane X Receptor, Constitutive Androstane Receptor, Aryl
Hydrocarbon Receptor and Peroxisome Proliferator-Activated
Receptor α at the Crossroads of Toxicokinetics and
Toxicodynamics

Jukka Hakkola^{1,2}, Camilla Beraasconi³, Sandra Coecke³, Lysiane Richert⁴, Tommy B. Andersons^{6,6} and Olavi Pelkonen^{1,2}

Research Unit of Biomedicine, Pharmacology and Texicology, Faculty of Medicine, University of Oulu, Oulu, Finland, "Medical Research Center Oulu, University of Oulu, Oulu, Finland, "Iuropean Commission Joint Research Center, EURL ECVAM, hpra, Baly, "KaLy-Cell, Pobsheim, France," Drug Metabolism and Pharmacolemetics, Cardiovascular and Metabolic Disease, IMED Biotech Unit, AstraZenoca, Gothenburg, Sweden and "Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden

https://tsar.jrc.ec.europa.eu/search-test-methodsa?search_combined_anonymous=cyp+induction

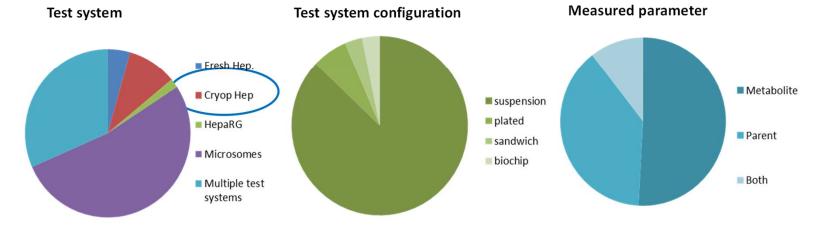
2018 Reproducibility

Within and between lab reproducibility for both methods

Toxicology in Vitro

Volume 53, December 2018, Pages 233-244

Establishing a systematic framework to characterise *in vitro* methods for human hepatic metabolic clearance



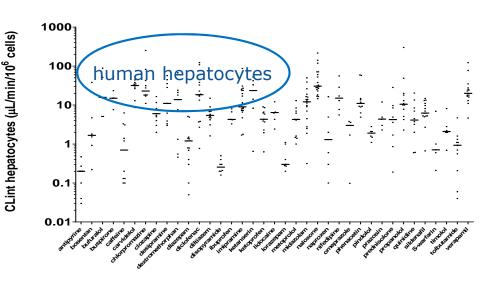
Varvara Gouliarmou ^{a, 1}, Alfonso Maria Lostia ^{a, 1}, Sandra Coecke ^a A ⊠, Camilla Bernasconi ^a, Jos Bessems ^{a, 2}, Jean Lou Dorne ^b, Stephen Ferguson ^c, Emanuela Testai ^d, Ursula Gundert Remy ^e, J. Brian Houston ^f, Mario Monshouwer ^g, Andy Nong ^h, Olavi Pelkonen ⁱ, Siegfried Morath ^a, Barbara A. Wetmore ^j, Andrew Worth ^a, Ugo Zanelli ^k, Maria Chiara Zorzoli ^a, Maurice Whelan ^a

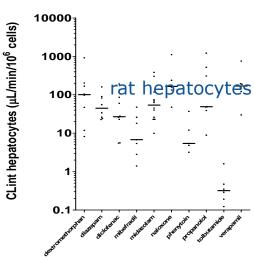
2015 - Literature search and call for clearance methods

Searching criteria: human based clearance methods and published 1998-2014 **Inclusion** of **115** published studies

2018 Issues on Within and Between Laboratory Reproducibility

Metabolism 2018 Lead NL: OECD 4.132 Feasibility study TG development

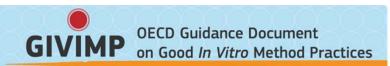

DECD BETTER POLICIES FOR BETTER LIVES


Results 2018 literature analysis:

Human data on 37 chemicals from 30 publications Rat data on 10 chemicals from 15 publications Large variation in protocols observed Limited information on within-laboratory variation Large between-laboratory variation (partly human variability) A framework to characterize in vitro hepatic metabolism across species for regulatory applications, Sandra Coecke, Camilla Bernasconi, Alfonso Lostia, Alicia Paini, Sharon Munn, Olavi Pelkonen, Tommy B. Andersson, , Minne Heringa,

Jochem Louise, Ans Punt, Betty Hackert et al.

Presentation Workshop on "In vitro comparative metabolism studies in regulatory pesticide risk assessment", EFSA, 15-16 November 2018, Parma, Italy



Reproducibility

Too few data to assess within laboratory reproducibility
Too large variation (%CV) between labs → non-harmonised protocols

9. Reporting of results

• Gives guidance on reporting of data for regulatory surposes rounding the VECTO Mutual August Peter Peter August Peter Peter August Peter Pet

Major required elements to be reported for mechanistic methods and the related study results????

in vitro method details (protocols) and acceptance criteria allowing to identify those methodological aspects that are likely to affect the study values obtained -> required step for international harmonisation of in vitro mechanistic study data

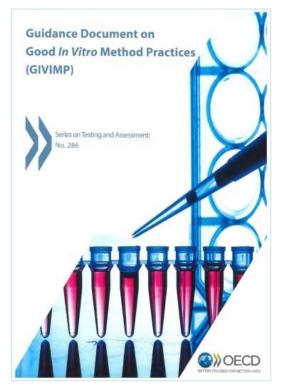
Metabolism 2018 Lead NL: OECD 4.132 Feasibility study TG development

Examples of some test system and in vitro method details				
Parameters	Protocol EC JRC EURL ECVAM	Harmonised		
Human CryoHepatocytes	primary	Yes		
Source	cryopreserved (pooled 10 donors)	No		
Culture condition	in suspension	Yes		
Culture material	96-well plate	No		
Medium	WME, 15 mM HEPES, 2 mM L- glutamine, Insulin, Transferrin, Selenium (ITS)	Yes/No		
Concentration substrate	1 μΜ	No		
Solvent	0.01% DMSO	No		
Incubation time	0, 15, 30, 60, 90, 120 min	No		
Use of CO2 incubator	yes	No		
Medium movement	yes, shaking	Yes		
Sampling	medium + cells	Yes		
Cell concentration	$0.5 \cdot 10^6$ cells/mL (or $1.0 \cdot 10^6$ cells/mL ?)	No		
Incubation volume	0.1 mL	No		
Stop reaction	add equal part solvent (ACN) with internal standard (70 µL sample + 70 µL solvent)	No		

GIVIMP

OECD Guidance Document on Good *In Vitro* Method Practices

Applying GIVIMP during the development of in vitro methods is one of the **tools** used to improve the quality and reliability of in vitro methods and their resulting data contributing to a **credibility revolution** of scientific results


The quality and relevance of mechanistic in vitro method study data generated are related to the methodological aspects

Reporting test system aspects and the full in vitro method (incl. acceptance criteria) allows for detailed systematic reviews understanding variability in the mechanistic study data when evaluating their validity

OECD Guidance Document on Good In Vitro Method Practices

Good In Vitro Method Practices (GIVIMP) ©EU, 2018

Available on OECD e-Library https://doi.org/10.1787/20777876

Also available on the OECD Series for Testing and Assessment No. 286

Collaboration = faster progress

EURL ECVAM first GIVIMP writing team

EC JRC Chemicals Safety and Alternative Methods hosting EURL ECVAM

EU-NETVAL meeting participants

DG ENV

et al.

OECD team

DECD GIVIMP expert group

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub #ECVAM

YouTube: EU Science Hub

LinkedIn: Joint Research Centre

Facebook: EU Science Hub - Joint Research Centre

sandra.COECKE@ec.europa.eu

Twitter: @SandraCoecke

LinkedIn: Sandra Coecke

